Article
  • The Effect of Surface-Treatment of Fiber on the Mechanical Properties of Carbon Fiber Reinforced Plastics 2. The Effect of Surface-Treatment on the Interfecial Shear Strength
  • Moon CK, Um YS, Cho HH, Lee JO, Park TW
  • 섬유의 표면처리가 탄소섬유강화 복합재료의 기계적적특성에 미치는 영향 2. 계면강도에 미치는 표면처리의 효과
  • 문창권, 엄윤성, 조현혹, 이장우, 박천욱
Abstract
In the present study, the so-called "solution microbond mothod" has been developed for the correct estimation of interfacial shear strength between carbon fiber and thermoplastic resins and its validity has been tested by the application to the carbon fiber/HDPE composite system. From the analysis of the affect of surface treatment of carbon fiber on the interfacial strength between fiber and matrix according to this method, it has been found that the use of carbon fiber treated with the HDPE-g-PAAm coupling agent prepared by the Inverse emulsion polymerization resulted in appreciable increase In interfacial strength compared to the case of nontreated carbon fiber, the effect being more pronounced in graft copolymers of the water-indispensible(toluene-soluble) type and with PE of MW=20,000 than those corresponding to the water-dispensible(toluene-insoluble) type and PE of MW= 200,000. In addition, this result has been confirmed by the observation of the interfacial microstructure using polarizing microscope.

본 연구에서는 탄소섬유와 열가소성 수지와의 계면전단강도 평가에 쉽게 적용가능한 "Solution microbonding method"를 개발하고 그 적용가능성을 검토하였으며, 이 방법에 의해서 탄소섬유와 HDPE수지간의 계면전단강도에 미치는 석유의 표면처리효과를 비교 검토하였다. PE에 AAm를 graft 중합시킨 표면처리제(HDPE-g-PAAm)는 계면전단강도를 상승시키는 효과가 있었으며, PE의 분자량 2만이 20만보다, 그리고 비수분산성(toluene에 가용) 표면처리제)가 수분산성(toluene에 불용) 표면처리제 보다 계면전단강도의 상승효과가 더욱 크게 나타났다. 이러한 효과를 섬유와 PE수지간에 계면조직상태를 편광현미경으로 관찰하여 확인하였다.

References
  • 1. Hancock P, Cuthbertson RC, J. Mater. Sci., 5, 762 (1970)
  •  
  • 2. Moon CKConposite Structure and Fracture Toughness of Fibrous Composite Materials, Ph.D. Thesis, Tokyo Institute Technology, Tokyo (1989)
  •  
  • 3. Spandoukis J, Young RJ, J. Mater. Sci., 19, 487 (1984)
  •  
  • 4. Dilandro L, J. Mater. Sci., 22, 1980 (1987)
  •  
  • 5. Tanaka A, J. Appl. Polym. Sci., 18, 2267 (1980)
  •  
  • 6. Berie M, Fiber Sci. Technol., 6, 47 (1973)
  •  
  • 7. Riess GProceeding of 2nd Carbon Fibers Conf., No. 8 (1974)
  •  
  • 8. Snbramanian PV, Polym. Eng. Sci., 18, 590 (1978)
  •  
  • 9. Snbramanian PV, Pure Appl. Chem., 52, 1929 (1980)
  •  
  • 10. Benatar A39th Ann. Tech. Conf. SPI, 3-F (1984)
  •  
  • 11. Jervela P, Int. J. Adhes. Adhes., 3, 141 (1983)
  •  
  • 12. Outwater JO, Murphy MC, Modern Plast., 47, 160 (1970)
  •  
  • 13. Mandrell JF, Int. J. Adhes. Adhes., 40 (1980)
  •  
  • 14. Penn LS, Lee SM, Fiber Sci. Tech., 17, 91 (1982)
  •  
  • 15. Favre JP, Int. J. Adhes. Adhes., 1, 311 (1981)
  •  
  • 16. Miller B, Compos. Sci. Technol., 28, 17 (1987)
  •  
  • 17. Eagles PB, J. Appl. Polym. Sci., 20, 435 (1976)
  •  
  • 18. Mcalea KP, ANTEC, 458 (1987)
  •  
  • 19. Moon CK, J. Appl. Polym. Sci.to be submitted
  •  
  • 20. Park TW, Polym.(Korea)to be submitted
  •  
  • 21. Kelly A, Proc. Roy. Soc. London A, 319, 95 (1970)
  •  
  • 22. Folkes MT, Hardwick ST, J. Mater. Sci. Lett., 3, 1071 (1984)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1990; 14(6): 630-637

    Published online Dec 25, 1990