Article
  • Surface Functionalization of Graphene Oxide via Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization and Its Effect on the Performance of Poly(lactic acid)
  • Lang Zheng and Weijun Zhen

  • Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046

  • ATRP의 전자전달로 생성된 활성제를 이용한 산화그래핀의 표면기능화와 Poly(lactic acid)의 성능에 미치는 영향
Abstract

An improved Hummers method was used to prepare graphene oxide (GO). Then, the orthogonal experiment design methods were used to select the optimum conditions of preparation for graphene oxide-polymethyl methacrylate (GO-PMMA) via activators regenerated by electron transfer for atom transfer radical polymerization (AGET-ATRP). The optimum preparation conditions were determined by orthogonal tests. Furthermore, poly(lactic acid) (PLA)/GO-PMMA nanocomposites were prepared by melt blending to improve the comprehensive performance of PLA. Analysis results indicated that methyl methacrylate (MMA) was successfully grafted onto GO, and the addition of 0.3 wt% of GO-PMMA increased the tensile strength, elongation at break, and impact strength of PLA/GO-PMMA nanocomposites by 7.82, 40.66, and 50.62%, respectively, compared with PLA. Moreover, GO-PMMA eliminated the cold crystallization of PLA matrix and improved the crystallinity of PLA by 27.55%. In all, this study provided an effective and feasible method for improving the comprehensive performance of PLA.


Keywords: poly(lactic acid), graphene oxide, activators regenerated by electron transfer for atom transfer radical polymerization (AGET-ATRP), nanocomposites

Introduction

Polylactic acid (PLA) is a well-known green polymer material. Compared with traditional plastic, PLA has good biodegradability and biocompatibility.1,2 It is widely used in biomedical engineering,3 coating,4 film thermoplastic materials, 5 textile6 and packaging7 engineering field.
In spite of these advantages, the low crystallinity, slow crystallization rate, poor impact resistance, poor heat resistance, and weak hydrophilicity of PLA has severely restricted its application in industry.8-11 Therefore, it is necessary to modify the PLA before the actual processing and application. Currently, the modified method can be simply divided into chemical and physical methods.12 Among them, the physical method is to process a variety of materials or nano-filler and polylactic acid into composite materials. And the method does not need to carry on the chemical reaction, causing the modification process to be simplified, which is more suitable for the industrialization. 13 In recent years, PLA has been modified with various nucleating agents such as montmorillonite,14 hydroxyapatite,15 carbon nanotubes16 and graphene.17 The addition of these nucleating agents can improve the performance of PLA to different degrees. However, at present, inorganic nucleating agents have been unable to meet the needs of industrial production, so the development of new organic nucleating agent is particularly important. The advantage is that organic nucleating agents have better compatibility with PLA. In addition, according to the molecular structure and nucleation factors of the nucleating agent and PLA, an organic nucleating agent with a specific functional group can be designed, which greatly improving the nucleation effect of the nucleating agent.18
Graphene oxide (GO) is an important derivative of graphene, which is obtained by chemical oxidation of natural graphite followed by ultrasonic stripping. Although the chemical oxidation process of GO destroys the highly conjugated structure of graphene, it retains the special surface properties and lamellar structure, and introduces a large number of oxygen-containing functional groups such as hydroxyl, carboxyl and epoxy groups.19 Functionalization based on these groups is a significant means to extend the scope of GO’s application. Atom transfer radical polymerization (ATRP) is one of the most important and effective methods of reactive radical polymerization. It has the characteristics of fast reaction speed, mild reaction condition and wide range of available monomers. 20 And it is unmatched by other existing aggregation methods because of the excellent molecular design ability.
Activators regenerated by electron transfer for atom transfer radical polymerization (AGET-ATRP) is a method evolved from ATRP. As a new type of polymerization method, AGETATRP not only has all the advantages of traditional ATRP, and does not need to operate under anhydrous oxygen-free conditions, has been widely concerned.21 The results of the existing studies22-24 showed that ATRP method could give GO a variety of special functions, such as changing the surface polarity of GO to improve the dispersibility in solution and polymer, which could broaden the application of GO in various fields. Up to now, modified GO via the method of AGETATRP is very rare.
In this article, GO was first prepared by a modified Hummers method. Then, the methyl methacrylate (MMA) was grafted on the GO surface by AGET-ATRP method, and the optimum reaction conditions were determined by orthogonal experiment. Finally, PLA/GO-PMMA nanocomposites were prepared by melt blending. The structure and properties of the composites were studied.

References
  • 1. E. F. Craparo, B. Porsio, M. L. Bondì, G. Giammona, and G. Cavallaro, Polym. Degrad. Stab., 119, 56 (2015).
  •  
  • 2. Y. Zhang, Y. Zhao, H. Pan, X. Lang, H. Yang, and H. Zhang, Polym. Korea, 40, 429 (2016).
  •  
  • 3. B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem, Adv. Drug Deliver. Rev., 107, 163 (2016).
  •  
  • 4. C. Lantano, I. Alfieri, A. Cavazza, C. Corradini, A. Lorenzi, and N. Zucchetto, Food Chem., 165, 342 (2014).
  •  
  • 5. X. Zhu, R. Huang, T. Zhong, and A. Wan, Polym. Korea, 39, 889 (2015).
  •  
  • 6. J. Lunt and A. L. Shafer, J. Ind. Text., 29, 191 (2000).
  •  
  • 7. G. Bang and S. W. Kim, J. Ind. Eng. Chem., 18, 1063 (2012).
  •  
  • 8. W. Zhen and J. Sun, Polym. Korea, 38, 299 (2014).
  •  
  • 9. Z. Ru, Y. Wang, K. Wang, G. Zheng, L. Qian, and C. Shen, Polym. Bull., 70, 195 (2013).
  •  
  • 10. E. Mascheroni, V. Guillard, F. Nalin, L. Mora, and L. Piergiovanni, J. Food Eng., 98, 294 (2010).
  •  
  • 11. A. Abdalhay, K. H. Hussein, L. Casettari, K. A. Khalil, and A. S. Hamdy, Mater. Sci. Eng., C, 60, 143 (2016).
  •  
  • 12. N. D. Geyter, R. Morent, T. Desmet, M. Trentesaux, L. Gengembre, and P. Dubruel, Surf. Coat. Technol., 204, 3272 (2010).
  •  
  • 13. H. Xiang, Y. Mu, C. Hu, and X. Luo, J. Nanomater., 2017, 10 (2017).
  •  
  • 14. R. Arjmandi, A. Hassan, S. J. Eichhorn, M. K. M. Haafiz, Z. Zakaria, and F. A. Tanjung, J. Mater. Sci., 50, 3118 (2015).
  •  
  • 15. S. I. Tverdokhlebov, E. N. Bolbasov, E. V. Shesterikov, L. V. Antonova, A. S. Golovkin, and V. G. Matveeva, Appl. Surf. Sci., 329, 32 (2015).
  •  
  • 16. H. S. Han, J. M. You, H. Jeong, and S. Jeon, J. Nanosci. Nanotechno., 14, 4050 (2014).
  •  
  • 17. Y. Cao, J. Feng, and P. Wu, Carbon, 48, 3834 (2010).
  •  
  • 18. Y. H. Cai, Y. Tang, and L. S. Zhao, J. Appl. Polym. Sci., 132, 1 (2015).
  •  
  • 19. Y. Chen, A. Zhang, L. Ding, Y. Liu, and H. Lu, Composites Part B, 108, 386 (2017).
  •  
  • 20. X. Yang, N. Zhao, and F. J. Xu, Nanoscale, 6, 6141 (2014).
  •  
  • 21. X. Zhan, Y. Yan, Q. Zhang, and F. Chen, J. Mater. Chem. A, 2, 9390 (2014).
  •  
  • 22. F. Perreault, M. E. Tousley, and M. Elimelech, Environ. Sci. Technol. Lett., 1, 71 (2016).
  •  
  • 23. B. Kim, J. Jeong, J. H. Jung, B. S. Kim, K. S. Jung, and H. J. Paik, Polym. Korea, 38, 671 (2014).
  •  
  • 24. M. Kumar, J. S. Chung, and S. H. Hur, Nanoscale Res. Lett., 9, 345 (2014).
  •  
  • 25. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
  •  
  • 26. X. Wu and D. Y. C. Leung, Appl. Energ., 88, 3615 (2011).
  •  
  • 27. J. F. Zhong, X. S. Chai, X. L. Qin, and S. Y. Fu, Carbohydr. Polym., 86, 367 (2011).
  •  
  • 28. X. S. Chai, J. F. Zhong, and H. C. Hu, J. Chromatogr. A, 1238, 128 (2012).
  •  
  • 29. S. H. Lee, D. R. Dreyer, J. An, A. Velamakanni, R. D. Piner, and S. Park, Macromol. Rapid Commun., 31, 281 (2010).
  •  
  • 30. K. Qi, Y. Sun, H. Duan, and X. Guo, Corros. Sci., 98, 500 (2015).
  •  
  • 31. T. Kotre, O. Nuyken, and R. Weberskirch, Macromol. RapidCommun., 23, 871 (2015).
  •  
  • 32. P. Opaprakasit, M. Opaprakasit, and P. Tangboriboonrat, Appl. Spectrosc., 61, 1352 (2007).
  •  
  • 33. G. Gonçalves, P. A. A. P. Marques, A. B. Timmons, I. Bdkin, M. K. Singh, and N. Emami, J. Mater. Chem., 20, 9927 (2010).
  •  
  • 34. L. Xu, B. Yin, H. Yan, A. Ma, and M. Yang, Rsc. Adv., 5, 82005 (2015).
  •  
  • 35. H. Wang and Z. Qiu, Thermochim. Acta, 527, 40 (2012).
  •  
  • 36. L. Lin, J. Qiu, and E. Sakai, Chem. Eng. J., 209, 20 (2012).
  •  
  • 37. C. Bao, L. Song, W. Xing, B. Yuan, C. A. Wilkie, and J. Huang, J. Mater. Chem., 22, 6088 (2012).
  •  
  • 38. M. Shayan, H. Azizi, I. Ghasemi, and M. Karrabi, Carbohydr. Polym., 124, 237 (2015).
  •  
  • 39. L. Wang, Y. N. Wang, Z. G. Huang, and Y. X. Weng, Mater. Des., 66, 7 (2015).
  •  
  • 40. T. Lu, S. Liu, M. Jiang, X. Xu, Y. Wang, and Z. Wang, Composites Part B, 62, 191 (2014).
  •  
  • 41. B. Chieng, N. Ibrahim, Y. Wan, M. Hussein, Y. Then, and Y. Loo, Polymers, 6, 2232 (2014).
  •  
  • 42. M. Jawaid, A. Hassan, and H. Balakrishnan, J. Compos. Mater., 48, 769 (2014).
  •  
  • 43. H. D. Huang, P. G. Ren, J. Z. Xu, L. Xu, G. J. Zhong, and B. S. Hsiao, J. Membrane Sci., 464, 110 (2014).
  •  
  • 44. Z. Xu, Y. Niu, L. Yang, W. Xie, H. Li, and Z. Gan, Polymer, 51, 730 (2010).
  •  
  • 45. A. Babanalbandi, D. Hill, D. Hunter, and L. Kettle, Polym. Int., 48, 980 (2015).
  •  
  • 46. J. Henricks, M. Boyum, and W. Zheng, J. Therm. Anal. Calorim., 120, 1 (2015).
  •  
  • 47. Y. Xu, W. Yu, and C. Zhou, RSC Adv., 4, 55435 (2014).
  •  
  • 48. M. K. Fehri, C. Mugoni, P. Cinelli, I. Anguillesi, M. B. Coltelli, and S. Fiori, Express. Polym. Lett., 10, 274 (2016).
  •  
  • 49. R. Salehiyan, A. A. Yussuf, and A. Akbari, J. Elastom. Plast., 47, 69 (2015).
  •  
  • 50. M. J. Carbone, M. Vanhalle, B. Goderis, and P. Van Puyvelde, J. Polym. Eng., 35, 169 (2015).
  •  
  • 51. H. Eslami and M. R. Kamal, J. Appl. Polym. Sci., 129, 2418 (2013).
  •  
  • 52. J. J. Cooper-White and M. E. Mackay, J. Polym. Sci., Part B: Polym. Phys., 37, 1803 (1999).
  •  
  • 53. A. Helle, S. Hirsjärvi, L. Peltonen, J. Hirvonen, and S. K. Wiedmer, J. Chromatogr. A, 1178, 248 (2008).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2018; 42(4): 581-593

    Published online Jul 25, 2018

  • 10.7317/pk.2018.42.4.581
  • Received on Nov 14, 2017
  • Revised on Jan 24, 2018
  • Accepted on Jan 30, 2018

Correspondence to

  • Weijun Zhen
  • Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046

  • E-mail: zhenweijun6900@163.com
  • ORCID:
    0000-0001-9225-489X