Article
  • Polydiacetone Acrylamide as Precursors to Polymer Side-Chain Conjugates
  • Hongzhen Tan, Zhipeng Yu, Junjie Xiao, Xi Wang , Chunwang Yi, and Shengpei Su

  • The Key Lab for Fine Processing of Resources and Advanced Materials of Hunan Province, Hunan Normal University, Changsha 410081, China
    National & Local Joint Engineering Lab. for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China

  • Polymer Side-Chain Conjugates를 위한 전구체인 Polydiacetone Acrylamide
Abstract

Polydiacetone acrylamide (PDAAM), a reactive polymer containing pendant ketone groups was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Kinetic studies indicated a well-controlled behavior of this RAFT polymerization. The characteristics of this RAFT polymerization was also confirmed by a wellcontrolled chain-extending RAFT polymerization using the above-synthesized PDAAM as a macromolecular chain transfer agent. Acid-catalyzed ketalization of PDAAM with trimethylol propane (TMP) was carried out to obtain the polymer containing pendant cyclic ketal groups and hydroxyl groups, PDAAM-TMP. PCL was grafted from PDAAM-TMP by ring-opening polymerization (ROP) in the presence of tin 2-ethylhexanoate as a catalyst to obtain graft copolymer. Basecatalyzed aldol condensation of PDAAM with benzaldehyde was also used to obtain poly[N-(1,1-dimethyl-3-oxo-5-phenyl-pent-4-enyl)-acrylamide] (PDMOPPEAM) having cinnamoyl groups, and the photoreactivity of polymer with cinnamoyl group was studied by UV-visible and IR absorption spectroscopy. Both of these two polymers prepared from PDAAM were characterized by FTIR and 1H NMR spectroscopy. PDAAM can be a multifunctional platform that can undergo further polymerization by ketalization and aldol condensation.


Keywords: reversible addition fragmentation chain transfer (RAFT), functionalization of polymers, ring-opening polymerization (ROP), photochemistry

Introduction

Construction of polymers with highly reactive functionalities that allow for further diverse functional group transformation has become an attractive research area in modern polymer chemistry.1-5 Polymers bearing ketone groups that can be modified easily and in high yield have been not only used as materials for films and coating, but also found use as a platform for post-polymerization modification.6-11 For example, Bertozzi prepared ketone-functionalized polymers derived from methyl vinyl ketone and isopropenyl methyl ketone via free-radical polymerization and reversible addition-fragmentation chain transfer (RAFT) polymerization, and the resulting polymers could be quantitatively modified with aminoxy-functionalized sugars.10 Poly(norbornene)-based random copolymers containing ketone functionalities were synthesized using ringopening metathesis polymerization, and the polymers can be quantitatively functionalized with a library of hydrazines.6,8 A class of polyketoesters containing ketone functionalities was prepared through condensation polymerization, and the modification of the ketone functionalities with oximes proceeded quantitatively.12 Taylor prepared polydiacetone acrylamide (PDAAM) of any molecular weight range via free-radical polymerization, and then quantitatively oximated the polymer to obtain polyoximes.13 However, other functional group transformations of ketone functional polymers, such as ketalization and aldol condensation, have not been reported.
Diacetone acrylamide (DAAM), an important fine chemical product, possesses the reactivity of an activated double bond and a methyl ketone. The polymerization of DAAM could be achieved using conventional free-radical polymerization.13-17 In general, the application of polydiacetone acrylamide (PDAAM) synthesized by conventional radical polymerization is limited where well-defined polymer architectures are required. Normally living radical polymerization (LRP) is one of the most powerful tools for the preparation of well-defined polymers.18-20 Rizzardo and coworkers first reported the RAFT synthesis homo- and block copolymer of DAAM.21 Recently, Cai et al. reported the RAFT polymerization of DAAM on irradiation with visible light.22
In this paper, PDAAM with well-controlled number-average molecular weights (Mn) and relatively narrow PDI and PDAAM-b-PtBA block copolymers were prepared via RAFT, and the post-polymerization modification were carried out using acid-catalyzed ketalization reaction23,24 and base-catalyzed aldol condensation reaction.25-27 The modified polymer containing pendant cyclic ketal groups and hydroxyl groups, PDAAM-TMP, was prepared using the acid-catalyzed ketalization reaction of PDAAM with trimethylol propane, and the obtained polymer was used as a macroinitiator for graftpolymerization of ε-CL to give graft copolymer. The photosensitive polymer containing pendant cinnamoyl groups was obtained by using the base-catalyzed aldol condensation reaction of PDAAM with benzaldehyde.

References
  • 1. C. Lin, Z. P. Zhang, J. F. Zheng, M. M. Liu, and X. X. Zhu, Macromol. Rapid Commun., 25, 1719 (2004).
  •  
  • 2. A. Godwin, M. Hartenstein, A. H. E. Müller, and S. Brocchini, Angew. Chem., Int. Ed., 113, 614 (2001).
  •  
  • 3. J. Q. Liu, R. C. Li, G. J. Sand, V. Bulmus, T. P. Davis, and H. D. Maynard, Macromolecules, 46, 8 (2013).
  •  
  • 4. V. Coessens, T. Pintauer, and K. Matyjaszewski, Prog. Polym. Sci., 26, 337 (2001).
  •  
  • 5. K. A. Günay, P. Theato, and H. A. Klok, J. Polym. Sci., Part A: Polym. Chem., 51, 1 (2013).
  •  
  • 6. S. K. Yang and M. Weck, Soft Matter., 5, 582 (2009).
  •  
  • 7. D. Rabuka, R. Parthasarathy, G. S. Lee, X. Chen, J. T. Groves, and C. R. Bertozzi, J. Am. Chem. Soc., 129, 5462 (2007).
  •  
  • 8. S. K. Yang and M. Weck, Macromolecules, 41, 346 (2008).
  •  
  • 9. D. G. Barrett and M. N. Yousaf, Biomacromolecules, 41, 6347 (2008).
  •  
  • 10. K. Godula, M. L. Umbel, D. Rabuka, Z. Botyanszki, C. R. Bertozzi, and R. Parthasarathy, J. Am. Chem. Soc., 131, 10263 (2009).
  •  
  • 11. R. C. Li, R. M. Broyer, and H. D. Maynard, J. Polym. Sci., Part A: Polym. Chem., 44, 5004 (2006).
  •  
  • 12. D. G. Barrett and M. N. Yousaf, Biomacromolecules, 9, 2029 (2008).
  •  
  • 13. L. D. Taylor, H. S. Kolesinski, D. O. Rickter, J. M. Grasshoff, and J. R. DeMember, Macromolecules, 16, 1561 (1983).
  •  
  • 14. T. Jochsberger, N. Indictor, N. Güdüllüdḡlu, C. J. Shahani, N. S. Baer, and N. Indictor, J. Polym. Sci., Polym. Chem. Ed., 16, 309 (1978).
  •  
  • 15. L. E. Coleman, J. F. Bork, D. P. Wyman, and D. I. Hoke, J. Polym. Sci., Part A: Polym. Chem., 3, 1601 (1965).
  •  
  • 16. D. I. Hoke and R. D. Robins, J. Polym. Sci., A-1: Polym. Chem., 10, 3311 (1072).
  •  
  • 17. J. A. Harris, O. Hinojosa, and J. C. Arthur, J. Polym. Sci., Polym. Chem. Ed., 12, 679 (1974).
  •  
  • 18. K. Matyjaszewski, Macromolecules, 45, 4015 (2012).
  •  
  • 19. C. Boyer, V. Bulmus, T. P. Davis, V. Ladmiral, J. Q. Liu, and S. Perrier, Chem. Rev., 109, 5402 (2009).
  •  
  • 20. K. E. B. Doncom, H. Willcock, and R. K. O'Reilly, J. Polym. Sci., Part A: Polym. Chem., 52, 3026 (2014).
  •  
  • 21. C. M. Schilli, A. H. E. Müller, E. Rizzardo, S. H. Thang, and Y. K. Chong, ACS Symp. Ser., 854, 603 (2003).
  •  
  • 22. X. H. Tang, J. Han, Z. G. Zhu, X. H. Lu, H. Chen, and Y. L. Cai, Polym. Chem., 5, 4115 (2014).
  •  
  • 23. A. S. Amarasekara and S. A. Hawkins, Eur. Polym. J., 47, 2451 (2011).
  •  
  • 24. H. Morinaga, H. Morikawa, Y. M. Wang, A. Sudo, and T. Endo, Macromolecules, 42, 2229 (2009).
  •  
  • 25. D. G. Borden and N. Y. Rochester, U.S. Patent 3725231 (1973).
  •  
  • 26. R. W. Jahnke, U.S. Patent 3737319 (1973).
  •  
  • 27. E. Rusu and M. Onciu, J. Macromol. Sci. Pure Appl. Chem., 42, 1025 (2005).
  •  
  • 28. M. F. Zhang, T. Breiner, H. Mori, and A. H. E. Müller, Polymer, 44, 1449 (2003).
  •  
  • 29. J. T. Lai, D. Filla, and R. Shea, Macromolecules, 35, 6754 (2002).
  •  
  • 30. W. Z. Yuan, J. Y. Yuan, F. B. Zhang, X. M. Xie, and C. Y. Pan, Macromolecules, 40, 9094 (2007).
  •  
  • 31. A. H. Ali and K. S. V. Srinivasan, Polym. Int., 43, 310 (1997).
  •  
  • 32. R. Balaji and S. Nanjundan, J. Appl. Polym. Sci., 86, 1023 (2002).
  •  
  • 33. A. Mittal, S. Sivaram, and D. Baskaran, Macromolecules, 39, 5555 (2006).
  •  
  • 34. C. Cheng, G. R. Sun, E. Khoshdel, and K. L. Wooley, J. Am. Chem. Soc., 129, 10086 (2007).
  •  
  • 35. R. Santhi, K. V. Babu, A. Penlidis, and S. Nanjundan, React. Funct. Polym., 66, 1215 (2006).
  •  
  • 36. S. Yusa, M. Sugahara, T. Endo, and Y. Morishima, Langmuir, 25, 5258 (2009).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2018; 42(4): 560-567

    Published online Jul 25, 2018

  • 10.7317/pk.2018.42.4.560
  • Received on Oct 28, 2017
  • Revised on Feb 4, 2018
  • Accepted on Mar 14, 2018

Correspondence to

  • Xi Wang, and Shengpei Su
  • The Key Lab for Fine Processing of Resources and Advanced Materials of Hunan Province, Hunan Normal University, Changsha 410081, China
    National & Local Joint Engineering Lab. for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China

  • E-mail: wangxiiccas@hotmail.com, sushengpei@yahoo.com
  • ORCID:
    0000-0002-3620-3649,0000-0003-4225-1468