Article
  • Inorganic Nanomaterials with a Highly Fluorinated Polymer Ligand Dispersed in Fluorous Solvents
  • Kim MS, Kim YT, Son JC, Kwon HY, Lee SH, Lee JK
  • 고불소계 용제에 분산된 고불소화 고분자-무기 복합재료 분산액의 합성 및 특성 평가
  • 김미선, 김영태, 손종찬, 권호영, 이상호, 이진균
Abstract
We report a study to develop 'highly fluorinated polymer-inorganic hybrid materials' and their dispersions in materials-and-environment-friendly fluorous solvents. Because of their limited interactions with conventional organic materials, the fluorous solvents are regarded to be advantageous processing media in constructing multi-layered organic electronic devices by solution processing. With the help of an efficient coupling reaction between amine-functionalized BaTiO3 (BTO) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PFDMA) chains modified with N-hydroxysuccinimide (NHS) ester group, it was possible to recover the highly fluorinated organic/inorganic nanocomposite, BTOPFDMA. The dispersion of BTO-PFDMA with highly fluorinated negative-tone photoresist polymer, P(FDMA-r-GMA), in a hydrofluoroether solvent, HFE-7500 or PF-7600, showed sufficient dispersion stability and spin-casting properties. Thin films of polymer-inorganic composite materials were fabricated by spin-casting method, and patterns as small as 10 μm could be built by UV exposure and rinse with a fluorous solvent.

재료친화적, 환경친화적인 고불소계 용제에 분산되어 용액 공정을 통해 적층 구조의 유기소자 제작을 가능케하는 '고불소화 고분자-나노 복합재료 분산액'의 개발 노력을 보고한다. 고불소계 용제에 무기 나노입자를 분산시키고자 N-hydroxysuccinimide(NHS) ester를 이용하는 커플링 반응을 적용하여 높은 유전상수를 지니는 BaTiO3(BTO) 표면에 고불소화 고분자인 poly(1H,1H,2H,2H-perfluorodecyl methacrylate)(PFDMA)를 리간드로 도입하였다. 회수된 '고불소화 유/무기 나노 복합재료(BTO-PFDMA)'는 고불소계 용제에 대한 분산 특성을 나타내었으며, 고불소화 고 분자 감광재료인 P(FDMA-r-GMA)와 고분자-무기입자 복합재료 분산액을 형성하여 자외선 조사를 통해 10 μm급 패턴 형성이 가능함을 보여주었다.

Keywords: organic-inorganic nanocomposites; photopatterning; highly fluorinated polymer ligand; fluorous solvents; NHS-ester coupling reaction

References
  • 1. Ingrosso C, Panniello A, Comparelli R, Curri ML, Striccoli M, Materials, 3, 1316 (2010)
  •  
  • 2. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R, Prog. Polym. Sci, 38, 1232 (2013)
  •  
  • 3. Schroeder R, Majewski LA, Grell M, Adv. Mater., 17(12), 1535 (2005)
  •  
  • 4. Guo N, DiBenedetto SA, Kwon DK, Wang L, Russell MT, Lanagan MT, Facchetti A, Marks TJ, J. Am. Chem. Soc., 129(4), 766 (2007)
  •  
  • 5. Li JJ, Claude J, Norena-Franco LE, Seok SI, Wang Q, Chem. Mater., 20, 6304 (2008)
  •  
  • 6. Jung HM, Kang JH, Yang SY, Won JC, Kim YS, Chem. Mater., 22, 450 (2010)
  •  
  • 7. Kim H, Kobayashi S, AbdurRahim MA, Zhang MLJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW, Polymer, 52(8), 1837 (2011)
  •  
  • 8. Sugawara-Narutaki A, Polym. J., 45, 269 (2013)
  •  
  • 9. Beecroft LL, Ober CK, Chem. Mater., 9, 1302 (1997)
  •  
  • 10. Cao AN, Liu Z, Chu SS, Wu MH, Ye ZM, Cai ZW, Chang YL, Wang SF, Gong QH, Liu YF, Adv. Mater., 22(1), 103 (2010)
  •  
  • 11. Marques-Hueso J, Abargues R, Valdes JL, Martinez- Pastor JP, J. Mater. Chem., 20, 7436 (2010)
  •  
  • 12. Jiguet S, Bertsch A, Judelewicz M, Hofmann H, Renaud P, Microelectron. Eng., 83, 1966 (2006)
  •  
  • 13. Cho JD, Ju HT, Park YS, Hong JW, Macromol. Mater. Eng., 291, 1155 (2006)
  •  
  • 14. Xu JW, Wong CP, J. Appl. Polym. Sci., 103(3), 1523 (2007)
  •  
  • 15. Yilmaz E, Ertas G, Bengu E, Suzer S, J. Phys. Chem., 114, 18401 (2010)
  •  
  • 16. Jiang BB, Pang XC, Li B, Lin ZQ, J. Am. Chem. Soc., 137(36), 11760 (2015)
  •  
  • 17. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li JY, Calame JP, Perry JW, ACS Nano, 3, 2581 (2009)
  •  
  • 18. Yang K, Huang XY, Huang YH, Xie LY, Jiang PK, Chem. Mater., 25, 2327 (2013)
  •  
  • 19. Xie LY, Huang XY, Huang YH, Yang K, Jiang PK, J. Phys. Chem., 117, 22525 (2013)
  •  
  • 20. Yang K, Huang XY, Xie LY, Wu C, Jiang PK, Tanaka T, Macromol. Rapid Commun., 33(22), 1921 (2012)
  •  
  • 21. Paniagua SA, Kim Y, Henry K, Kumar R, Perry JW, Marder SR, ACS Appl. Mater. Interfaces, 6, 3477 (2014)
  •  
  • 22. Yang K, Huang XY, Zhu M, Xie LY, Tanaka T, Jiang PK, ACS Appl. Mater. Interfaces, 6, 1812 (2014)
  •  
  • 23. Zhu M, Huang XY, Yang K, Zhai X, Zhang J, He JL, Jiang PK, ACS Appl. Mater. Interfaces, 6, 19644 (2014)
  •  
  • 24. Huang ZF, Fu CK, Wang SQ, Yang B, Wang X, Zhang QS, Yuan JY, Tao L, Wei Y, Macromol. Chem. Phys., 216, 1483 (2015)
  •  
  • 25. Huang XY, Jiang PK, Adv. Mater., 27(3), 546 (2015)
  •  
  • 26. Kim H, Jo SH, Jee JH, Han W, Kim Y, Park HH, Jin HJ, Yoo B, Lee JK, New J. Chem., 39, 836 (2015)
  •  
  • 27. Park M, Jung SH, Lim J, Kim DY, Kim HJ, Lee S, Jung H, Lee S, Lee C, Lee JK, J. Mater. Chem., 3, 2759 (2015)
  •  
  • 28. Kim Y, Kim KH, Lee A, Kim MS, Yoo B, Lee JK, J. Nanosci. Nanotechnol., 17, 5510 (2017)
  •  
  • 29. Mao Y, Felix NM, Nguyen PT, Ober CK, Gleason KK, Chem. Vapor Depos., 12, 259 (2006)
  •  
  • 30. Moad G, Chong YK, Postma A, Rizzardo E, Thang SH, Polymer, 46(19), 8458 (2005)
  •  
  • 31. Zhang XQ, Li JG, Li W, Zhang A, Biomacromolecules, 8(11), 3557 (2007)
  •  
  • 32. Chang SJ, Liao WS, Ciou CJ, Lee JT, Li CC, J. Colloid Interface Sci., 329(2), 300 (2009)
  •  
  • 33. Son J, Chae SG, Park WW, Lee A, Kim HR, Jung BJ, Lee JK, J. Nanosci. Nanotechnol., 17, 5806 (2017)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(5): 769-776

    Published online Sep 25, 2017

  • 10.7317/pk.2017.41.5.769
  • Received on Feb 3, 2017
  • Accepted on May 29, 2017