Article
  • Improving Environmental Durability of Epoxy Resin Using Tetra-n-butylammonium (TBA) Salt Modified Montmorillonite Nanoplatelets
  • Karimzadeh I, Sabzi M, Safibonab B, Hasanzadeh I, Farhangmehr M, Arman A
  • Tetra-n-butylammonium Salt로 개질된 Montmorillonite Nanoplatelet를 이용한 에폭시 수지의 환경 내구성 개선
Abstract
This study aimed to investigate the effect of organoclay concentration variation (1-5 wt%) on the weathering resistance of epoxy resin in terms of the strength, modulus and weight changes of the specimens after exposure to accelerated weathering conditions. Transmission electron microscopy (TEM) revealed an exfoliated and good dispersed nanofiller structure throughout the matrix up to 3 wt% loading. The tensile strength, modulus, and weight of the samples decreased after combined UV radiation and condensation, with much less extent for the nanocomposites than neat epoxy indicating that the presence of organoclay led to dominant enhancement in mechanical properties endurance of epoxy resin to environmental degradation. Nanocomposites also displayed much lower weight loss as compared to the unfilled epoxy after being subjected to the accelerated weathering by either temperature-humidity or by combined UV radiation and condensation.

Keywords: nanocomposites; epoxy; organoclay; accelerated weathering; mechanical properties

References
  • 1. Wetzel B, Haupert F, Zhang MQ, Combust. Sci. Technol., 63, 2055 (2003)
  •  
  • 2. Samadzadeh M, Boura SH, Peikari M, Kasiriha S, Ashrafi A, Prog. Org. Coat., 68, 159 (2010)
  •  
  • 3. Esawi AM, Farag MM, Polymer Nanotube Nanocomposites:Synthesis, Properties, and Applications, John Wiley & Sons, Inc., NJ, 2010.
  •  
  • 4. Barbero EJ, Introduction to Composite Materials Design, CRC Press, NY, 2010.
  •  
  • 5. Chawla KK, Composite Materials: Science and Engineering, Springer Science & Business Media, NY, 2012.
  •  
  • 6. Barikani M, Hasanzadeh I, Polym. -Plast. Technol. Eng., 52, 869 (2013)
  •  
  • 7. Ham M, Kim JC, Chang JH, Polym. Korea, 37(2), 225 (2013)
  •  
  • 8. Park B, Kim DS, Polym. Korea, 35(2), 124 (2011)
  •  
  • 9. Kwon K, Chang JH, Polym. Korea, 38(2), 232 (2014)
  •  
  • 10. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216 (1994)
  •  
  • 11. Azeez AA, Rhee KY, Park SJ, Hui D, Compos. Pt. B-Eng., 45, 308 (2013)
  •  
  • 12. Ha TY, Chang JH, Polym. Korea, 39(5), 705 (2015)
  •  
  • 13. Kiliaris P, Papaspyrides C, Prog. Polym. Sci, 35, 902 (2010)
  •  
  • 14. Saitoh K, Ohashi K, Oyama T, Takahashi A, Kadota J, Hirano H, Hasegawa K, J. Appl. Polym. Sci., 122(1), 666 (2011)
  •  
  • 15. Choudalakis G, Gotsis A, Eur. Polym. J., 45, 967 (2009)
  •  
  • 16. Chiu FC, Lai SM, Chen YL, Lee TH, Polymer, 46(25), 11600 (2005)
  •  
  • 17. You Z, Mills-Beale J, Foley JM, Roy S, Odegard GM, Dai Q, Goh SW, Constr. Build. Mater., 25, 1072 (2011)
  •  
  • 18. Wheeler PA, Wang J, Baker J, Mathias LJ, Chem. Mater., 17, 3012 (2005)
  •  
  • 19. Kim NH, Malhotra SV, Xanthos M, Microporous Mesoporous Mater., 96, 29 (2006)
  •  
  • 20. Nawani P, Gelfer MY, Hsiao BS, Frenkel A, Gilman JW, Khalid S, Langmuir, 23(19), 9808 (2007)
  •  
  • 21. Park JH, Jana SC, Macromolecules, 36(8), 2758 (2003)
  •  
  • 22. Zunjarrao SC, Sriraman R, Singh RP, J. Mater. Sci., 41(8), 2219 (2006)
  •  
  • 23. Sabzi M, Mirabedini SM, Zohuriaan-Mehr MJ, Atai M, Prog. Org. Coat., 65, 222 (2009)
  •  
  • 24. Zerda AS, Lesser AJ, J. Polym. Sci. B: Polym. Phys., 39(11), 1137 (2001)
  •  
  • 25. Kumar BG, Singh RP, Nakamura T, J. Compos. Mater., 36, 2713 (2002)
  •  
  • 26. Alamri H, Low IM, Mater. Des., 42, 214 (2012)
  •  
  • 27. Kim JK, Hu C, Woo RS, Sham ML, Compos. Sci. Technol., 65, 805 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(1): 98-103

    Published online Jan 25, 2017

  • 10.7317/pk.2017.41.1.98
  • Received on Jul 9, 2016
  • Accepted on Sep 23, 2016