Article
  • Preparation and Characterization of Flame Retardant High Impact Polystyrene
  • Kim M, Lee MJ, Ghim HD
  • 난연성 고충격 폴리스티렌의 합성 및 특성해석
  • 김민관, 이미정, 김한도
Abstract
A triphenyl phosphate (TPP) graft high impact polystyrene (HIPS) (TPP@HIPS) is synthesized to prepare flame retarding HIPS via radical addition reaction of TPP. From FTIR and 1H NMR analyses, successful addition reaction of the TPP and decreases of the amount of double bond of polybutadiene parts in HIPS were confirmed. Reduction of the amount of double bond by addition of TPP can also be confirmed through comparison of Izod impact strength values. From 31P NMR characterization, it can be supposed that the TPP exists as amorphous phase in TPP@HIPS. Thermal stability of the TPP@HIPS is improved, which is deduced by increasing residual char yield observed from TGA analyses. Residual char content of the TPP@HIPS at over 600 oC was 16.65 wt%, whereas there was no residue for pure HIPS (pHIPS). There are not significant differences in limited oxygen index (LOI) values of pHIPS and TPP@HIPS. However, the TPP@HIPS showed superior flame retardancy of V-1 rating in UL94 vertical test.

난연성 고충격 폴리스티렌(HIPS)의 합성을 위하여 라디칼계 부가반응을 통해 트리페닐포스페이트(TPP)를 그래프트하였다. FTIR과 1H NMR 분석을 통하여 TPP의 부가반응이 성공적으로 이루어졌음과 HIPS를 구성하는 폴리부타디엔(PB)의 이중결합이 감소하였음을 확인하였다. 또한 TPP의 부가에 따른 이중결합의 감소는 Izod 충격강도의 감소를 통해 확인하였다. 그래프트된 TPP가 TPP@HIPS의 비결정영역에 존재하고 있음은 31P NMR 분석을 통해 확인하였다. TGA 분석의 잔존 char yield로부터 TPP@HIPS의 열안정성이 향상되었음을 유추할 수 있었다. TPP@HIPS의 잔존 char yield는 600 oC 이상에서 16.65 wt%를 보였으며, 미처리 HIPS(pHIPS)의 경우에는 잔존하는 char가 존재하지 않았다. 한계산소지수(LOI) 수치는 pHIPS와 TPP@HIPS에 있어 유의미한 차이를 나타내지 않았으나, UL94 수직시험법을 통해 TPP@HIPS가 V-1 등급의 우수한 난연성을 나타냄을 확인하였다.

Keywords: high impact polystyrene; triphenyl phosphate; flame retardant; residual char content; UL94 vertical test

References
  • 1. Russo P, Acierno D, Rosa R, Leonelli C, Corradi A, Rizzuti A, Surf. Coat. Technol., 243, 65 (2014)
  •  
  • 2. Lacoste J, Delor F, Pilichowski JF, Singh RP, Prasad AV, Sivaram S, J. Appl. Polym. Sci., 59(6), 953 (1996)
  •  
  • 3. Peng X, Chen J, Kuang T, Yu P, Huang J, Mater. Lett., 123, 58 (2014)
  •  
  • 4. Zhang JZ, Wang X, Lu LD, Li D, Yang XJ, J. Appl. Polym. Sci., 87(3), 381 (2003)
  •  
  • 5. Sauca S, Giamberini M, Reina JA, Polym. Degrad. Stabil., 98, 453 (2013)
  •  
  • 6. Morgan AB, Tour JM, Macromolecules, 31(9), 2857 (1998)
  •  
  • 7. Lu SY, Hamerton I, Prog. Polym. Sci, 27, 1661 (2002)
  •  
  • 8. Jakab E, Uddin MA, Bhaskar T, Sakata Y, J. Anal. Appl. Pyrolysis, 68, 83 (2003)
  •  
  • 9. Bhaskar T, Matsui T, Uddin MA, Kaneko J, Muto A, Sakata Y, Appl. Catal. B: Environ., 43(3), 229 (2003)
  •  
  • 10. Braun U, Schartel B, Macromol. Chem. Phys., 205, 2185 (2004)
  •  
  • 11. Cui W, Guo F, Chen J, Fire Safety J., 42, 232 (2007)
  •  
  • 12. Shon KH, Kim M, Lee SM, Ji BC, Cho KS, Jeon K, Ghim HD, Fiber Polymers, 12, 451 (2011)
  •  
  • 13. Aimin Z, Chao L, Eur. Polym. J., 39, 1291 (2003)
  •  
  • 14. Brydon A, Burnett GM, Cameron GG, J. Polym. Sci. A: Polym. Chem., 11, 3255 (1973)
  •  
  • 15. Levchik SV, Bright DA, Moy P, Dashevsky S, J. Vinyl. Add. Technol., 6, 123 (2000)
  •  
  • 16. Finberg I, Yaakov YB, Georlette P, Polym. Degrad. Stabil., 64, 465 (1999)
  •  
  • 17. Jelcic Z, Holjevac-Grguric T, Rek V, Polym. Degrad. Stabil., 90, 295 (2005)
  •  
  • 18. Piorkowska E, Argon AS, Cohent RE, Polymer, 34, 4435 (1993)
  •  
  • 19. Balabanovich AI, Levchik GF, Yang JH, J. Fire Sci., 20, 519 (2002)
  •  
  • 20. Wang Y, Zhang F, Chen X, Jin Y, Zhang J, J. Polym. Fire Mater., 34, 203 (2010)
  •  
  • 21. Socrates G, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons, New York, 2001.
  •  
  • 22. Guo W, Chen S, Feng Y, Yang C, J. Phys. Chem. C, 111, 3109 (2007)
  •  
  • 23. Zhang N, Shen J, Pasquinelli MA, Hinks D, Tonelli AE, Polym. Degrad. Stabil., 120, 244 (2015)
  •  
  • 24. Greenhalgh R, Shoolery JN, J. N. Anal. Chem., 50, 2039 (1978)
  •  
  • 25. Fichera MA, Braun U, Schartel B, Sturm H, Knoll U, Jager C, J. Anal. Appl. Pyrolysis, 78, 378 (2007)
  •  
  • 26. Grimmer AR, Haubenreisser U, Chem. Phys. Lett., 99, 487 (1983)
  •  
  • 27. Feike M, Graf R, Schnell I, Jager C, Spiess HW, J. Am. Chem. Soc., 118(40), 9631 (1996)
  •  
  • 28. Zhang J, Jiang DD, Wilkie CA, Polym. Degrad. Stabil., 91, 358 (2006)
  •  
  • 29. Jang BN, Jung I, Choi J, J. Appl. Polym. Sci., 112(5), 2669 (2009)
  •  
  • 30. Xiao J, Hu Y, Yang L, Cai Y, Song L, Chen Z, Fan W, Polym. Degrad. Stabil., 91, 2163 (2006)
  •  
  • 31. Torre L, Kenny JM, Boghetich G, Maffezzoli A, J. Mater. Sci., 35(18), 4563 (2000)
  •  
  • 32. Hoang D, Kim J, Polym. Degrad. Stabil., 93, 36 (2008)
  •  
  • 33. Kandola BK, Krishnan L, Ebdon JR, Polym. Degrad. Stabil., 106, 129 (2014)
  •  
  • 34. Jeng RJ, Shau SM, Lin JJ, Su WC, Chiu YS, Eur. Polym. J., 38, 683 (2002)
  •  
  • 35. Kwon O, Lee JC, Seo KS, Seo CS, Kim SB, Appl. Chem. Eng., 24(2), 208 (2013)
  •  
  • 36. van Krevelen DW, Polymer, 16, 615 (1975)
  •  
  • 37. Balabanovich AI, Levchik GF, Levchik SV, Engelmann J, J. Fire Sci., 20, 71 (2002)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(1): 7-12

    Published online Jan 25, 2017

  • 10.7317/pk.2017.41.1.7
  • Received on May 11, 2016
  • Accepted on Aug 9, 2016