Article
  • Effects of Surface Modification of Silica Nanoparticles on the Mechanical Properties of UV-curable Silica/Polyurethane Acrylate Nanocomposite
  • Seo B, Park S, Ha KR
  • 실리카 나노입자 표면 개질이 UV 경화형 실리카/폴리우레탄 아크릴레이트 나노복합체의 기계적 성질에 미치는 영향
  • 서보경, 박성환, 하기룡
Abstract
In this study, we prepared silica nanoparticles with methacrylate groups on the silica surface using a two-step modification process. First, silica particles were silanized with (3-trimethoxysilylpropyl)diethylenetriamine(TPDT), and then a Michael addition reaction was performed between the N-H groups from the TPDT modified silica surface and the acrylate groups of 3-(acryloyloxy)-2-hydroxypropylmethacrylate(AHM). UV-curable urethane acrylate nanocomposites were subsequently prepared by incorporating (0-5 wt%) pristine silica, TPDT modified silica or TPDT/AHM modified silica as fillers. The incorporation of only 3.0 wt% of TPDT/AHM modified silica particles increased Young's modulus to 333.1MPa which represents a 30.8% improvement over UV-cured urethane acrylates and the best performance of all three fillers.

본 연구에서는 실리카 입자 표면을 (3-trimethoxysilylpropyl)diethylenetriamine(TPDT)로 처리하여 아미노기를 도입한 후, 마이클 부가 반응이 가능한 3-(acryloyloxy)-2-hydroxypropylmethacrylate(AHM)과 반응시켜 자유 라디칼 중합이 가능한 methacrylate기를 도입하였다. 순수 실리카, TPDT 혹은 TPDT/AHM으로 개질된 실리카를 충전제로 사용하여 urethane acrylate계 수지와 광중합법으로 나노복합체를 제조하였다. UV 수지 중합체와 순수 실리카, TPDT 로 개질된 실리카 및 TPDT/AHM으로 개질된 실리카를 각각 3.0 wt% 포함하는 나노복합체의 탄성률을 측정한 결과, TPDT/AHM으로 개질된 실리카 나노복합체의 탄성률이 333.1MPa으로 UV 수지 중합체보다 30.8% 증가하였음을 확인하였다.

Keywords: silica; surface modification; Michael addition reaction; UV-curing; mechanical property

References
  • 1. Kim O, Han S, Kim CK, Polym. Korea, 29(1), 102 (2005)
  •  
  • 2. Jeon HN, Kim JH, Ha KR, Polym. Korea, 36(3), 372 (2012)
  •  
  • 3. Hwang JH, Song KC, Korean Chem. Eng. Res., 49(3), 277 (2011)
  •  
  • 4. Decker C, Masson F, Schwalm R, Macromol. Mater. Eng., 288, 17 (2003)
  •  
  • 5. Murugavel R, Voigt A, Walawalkar MG, Roesky HW, Chem. Rev., 96(6), 2205 (1996)
  •  
  • 6. Salon MCB, Belgacem MN, Colloids Surf. A: Physicochem. Eng. Asp., 366, 147 (2010)
  •  
  • 7. Gelest, Inc., Silane Coupling Agents, Mossisville, PA, USA, 2006.
  •  
  • 8. Halvorson RH, Erickson RL, Davidson CL, Dent. Mater., 19, 327 (2003)
  •  
  • 9. Lee S, Ha KR, Korean J. Chem. Eng., 33(8), 2469 (2016)
  •  
  • 10. Seo B, Park S, Kim S, Ha KR, Polym. Korea, 40(3), 421 (2016)
  •  
  • 11. ASTM D 638. Standard test method for tensile properties of plastics (2003).
  •  
  • 12. Stansbury JW, Dickens SH, Dent. Mater., 17, 71 (2001)
  •  
  • 13. Yu X, Yi B, Wang X, Eur. Polym. J., 44, 3997 (2008)
  •  
  • 14. Nayak BR, Mathias LJ, J. Polym. Sci. A: Polym. Chem., 43(22), 5661 (2005)
  •  
  • 15. Xu XM, Li BJ, Lu HM, Zhang ZJ, Wang HG, J. Appl. Polym. Sci., 107(3), 2007 (2008)
  •  
  • 16. Park SC, Kim HG, Min KE, Polym. Korea, 37(1), 100 (2013)
  •  
  • 17. Yoo SH, Song HJ, Kim CK, Polym. Korea, 36(6), 721 (2012)
  •  
  • 18. Dickens SH, Stansbury JW, Choi KM, Floyd CJE, Macromolecules, 36(16), 6043 (2003)
  •  
  • 19. Wu QJ, Henriksson M, Liu X, Berglund LA, Biomacromolecules, 8(12), 3687 (2007)
  •  
  • 20. Kim DW, Lim MJ, Kim IS, Seo JC, Han HS, Proc. Org. Coat., 77, 1045 (2014)
  •  
  • 21. Sperling LH, Introduction To Physical Polymer Science, John Wiley & Sons. Inc., Hoboken NJ, p 230 (2005).
  •  
  • 22. Yoo TW, Woo JS, Ji JH, Lee BM, Kim SS, Biomater. Res., 16, 32 (2012)
  •  
  • 23. Kim HG, Polym. Korea, 40(1), 9 (2016)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(6): 907-914

    Published online Nov 25, 2016

  • 10.7317/pk.2016.40.6.907
  • Received on May 21, 2016
  • Accepted on Jun 20, 2016