Article
  • Studies on Behaviors of Critical Aggregation Concentration in Neutral Polymer/Sodium Dodecanoate Aqueous Solution System by means of Light Scattering Method
  • Jang HW, Park IH
  • 광산란법에 의한 중성고분자/나트륨 도데카노에이트 수용액계에서의 임계응집농도 거동 연구
  • 장한웅, 박일현
Abstract
The critical aggregation concentration (cac) has been investigated by means of laser light scattering method in the tertiary aqueous solution systems of neutral polymer/anionic surfactant, where poly(vinyl pyrrolidone) or poly(ethyl oxazoline) are used as neutral polymers and sodium dodecanoate as an anionic surfactant. According to Nagarajan model and Andelman theory, it has been analyzed how experimental cac values depend on the polymer concentration, its molecular weight and chemical structure. Especially, for higher molecular weight (MW) samples, the v-shape behavior of cac is observed as increasing polymer concentration. However, for much lower MW samples, monotonically and very slowly decreasing trend of cac is observed. When cac data from the samples of only different MW are replotted against the reduced concentration C[η] instead of C, they are all overlapped. For the polymer samples of different chemical structures, the term of chain flexibility should be added to the reduced concentration. When such a new parameter of C[η](Mw/Ro2)3/2 is used, final overlapping of all cac data has been obtained.

중성 고분자 폴리비닐피롤리돈 및 폴리에틸옥사졸린과, 음이온 계면활성제 나트륨 도데카노에이트의 3상계수용액에서 형성되는 임계응집농도(cac)를 광산란법으로 측정하였고, 고분자의 농도, 분자량, 그리고 화학구조에 대한 cac 실험 결과를 Nagarajan 모델 및 Andelman 이론 등으로 분석하였다. 특히 분자량이 충분히 클 경우, cac의 고분자 농도 의존성은 v 자형 거동으로 나타났으나, 분자량이 낮은 시료에서는 서서히 감소하는 현상으로 얻어졌다. 여기서 고분자 농도 C 대신 환산농도 C[η]로 변환시킨 뒤 cac를 재도시하면, 분자량이 다른 시료들의 cac 값들은 서로 겹쳐졌으나, 화학구조가 상이한 경우에는 사슬 유연성이 추가로 도입된 새로운 농도 파라미터 C[η](Mw/Ro2)3/2가 사용될 때 cac들의 겹침이 얻어졌다.

Keywords: critical aggregation concentration (cac); light scattering; sodium dodecanoate; poly(vinyl pyrrolidone); poly(ethyl oxazoline)

References
  • 1. Nagarajan R, Colloids Surf., 13, 1 (1985)
  •  
  • 2. Goddard ED, Ananthapadmanabhan KP, Editors, Interactions of Surfactants with Polymers and Proteins, CRC, London, 1992.
  •  
  • 3. Kwak JCT, Editor, Polymer-Surfactant System, Marcel Dekker, New York, 1998.
  •  
  • 4. Shah DO, Schechter RS, Editors, Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press, New York, 1977.
  •  
  • 5. Mittal KL, Fendler EJ, Editors, Solution Behavior of Surfactants, Springer, New York, 1982.
  •  
  • 6. Lee W, Kofinas P, Briber RM, Polymer, 53(14), 2942 (2012)
  •  
  • 7. Walker LM, Curr. Opin. Colloid Interface Sci., 14, 451 (2009)
  •  
  • 8. La Mesa C, J. Colloid Interface Sci., 286(1), 148 (2005)
  •  
  • 9. Mylonas Y, Karayanni K, Staikos G, Langmuir, 14(21), 6320 (1998)
  •  
  • 10. Holmberg K, Jonsson B, Krongberg B, Lindman B, Surfactants and Polymer in aqueous Solution, Wiley, New York, 2002.
  •  
  • 11. Park IH, Jang HW, Baek SH, J. Korea Chem. Soc., 59, 271 (2015)
  •  
  • 12. Nagarajan R, Ruckenstein E, Langmuir, 7, 2934 (1991)
  •  
  • 13. Diamant H, Andelman D, Europhys. Lett., 48, 170 (1999)
  •  
  • 14. Diamant H, Andelman D, Macromolecules, 33(21), 8050 (2000)
  •  
  • 15. de Gennes PG, J. Phys.(Paris), 37, L-59 (1976)
  •  
  • 16. Brochard F, de Gennes PG, Ferroelectrics, 30, 33 (1980)
  •  
  • 17. Park IH, Polymer, 40(8), 2003 (1999)
  •  
  • 18. Rubinstein M, Colby R, Polymer Physics, Oxford University Press, London, 2003.
  •  
  • 19. Sperling LH, Introduction to Physical Polymer Science, Wiley, New York, 2005.
  •  
  • 20. Fetters LF, Lohse DJ, Graessley WW, J. Polym. Sci. B: Polym. Phys., 37, 10233 (1999)
  •  
  • 21. Fetters LJ, Lohse DJ, Milner ST, Graessley WW, Macromolecules, 32, 6847 (199)
  •  
  • 22. Sung JH, Lee DC, Polymer, 42(13), 5771 (2001)
  •  
  • 23. Bandrup J, Immergert EH, Editors, Polymer Handbook, Wiley, New York, 1999.
  •  
  • 24. Williams ML, Landel RF, Ferry JD, J. Am. Chem. Soc., 77, 3701 (1955)
  •  
  • 25. Mesa CL, Colloids Surf., 160, 37 (1999)
  •  
  • 26. Gasbarrone P, Mesa CL, Colloid Polym. Sci., 279, 1192 (2001)
  •  
  • 27. Phillips JN, Trans. Faraday Soc., 51, 561 (1955)
  •  
  • 28. Huglin MB Editor, Light Scattering from Polymer Solutions, Academic Press, New York, 1972.
  •  
  • 29. Brown W, Editor, Dynamic Light Scattering: The Method and Some Applications, Clarendon, Oxford, 1993.
  •  
  • 30. Roe RJ, Method of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, Oxford, 2000.
  •  
  • 31. Blanco E, Gonzalez-Perez A, Ruso JM, Pedrido R, Prieto G, Sarmiento F, J. Colloid Interface Sci., 288(1), 247 (2005)
  •  
  • 32. Kang KH, Kim HU, Lim KH, Colloids Surf. A: Physicochem. Eng. Asp., 189, 113 (2001)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(6): 880-890

    Published online Nov 25, 2016

  • 10.7317/pk.2016.40.6.880
  • Received on May 10, 2016
  • Accepted on Jun 18, 2016