Article
  • The Effect of Modified Alumina for Fabrication of Thermal Conductive Acrylic Pressure Sensitive Adhesive
  • Oh JH, Kang S, Xiangxu L, No SR, You SS, Cho UR
  • 방열 아크릴 점착제의 제조를 위한 개질 알루미나의 효과
  • 오지환, 강신혜, 리시앙수, 노성래, 유성식, 조을룡
Abstract
Thermal conductive acrylic pressure sensitive adhesives (PSA) were synthesized by solution polymerization. The adhesive was mixed with (30, 60, 90 wt%) alumina (Al) pretreated by silane coupling agent. Adhesion properties of the PSA/Al composites were investigated by measuring peel strength, holding power, and initial tack. Thermal conductivity was measured by a laser flash analyzer. Peel adhesion and intial tack decreased with the alumina content, and holding power tended to increase. Adhesion properties of adhesive tape using modified alumina decreased compared with using pristine alumina, and thermal conductivity was increased by 10%. It was confirmed that the interfacial bonds between the PSA and the modified alumina increased because of silane coupling agent. Thermal conductivity of adhesive sheet containing 90 wt% modified alumina as filler was 0.242W/mK, which was significantly improved compared to pure PSA sheet.

용액중합을 통해 합성한 아크릴 점착제에 실란커플링제로 전처리한 알루미나(30, 60, 90 wt%)를 혼합하여 열전도성 복합체를 제조한 후 접착특성 및 열전도도를 조사하였다. 접착특성은 180o 박리강도, 유지력 및 초기점착력을 측정하였고, 열전도도는 laser flash 법을 이용하여 측정하였다. 박리강도와 초기점착력은 알루미나의 함량의 따라 감소하였고, 유지력은 향상되는 경향을 보였으며, 열전도도는 크게 향상되었다. 전처리한 알루미나를 사용한 점착테이프는 전처리하지 않은 알루미나를 사용한 것에 비해서 상대적으로 점착력이 낮아지며, 열전도도는 10% 가량 향상되었다. 이는 커플링제로 인하여 점착제 매트릭스와 알루미나 필러 사이의 계면결합이 증가한 것으로 추정된다. 개질된 90 wt%의 알루미나를 포함한 경우 열전도도는 0.242 W/mK 값을 나타내어 알루미나를 포함하지 않은 점착테이프에 비해 크게 향상됨을 확인할 수 있었다.

Keywords: alumina; thermal conductivity; pressure sensitive adhesive; surface modification; silane coupling agent

References
  • 1. Liang YC, Zhang JN, Li M, Guo YP, Yuan JS, Prz. Electrotech., 88, 328 (2012)
  •  
  • 2. McGlen RJ, Jachuck R, Lin S, Appl. Therm. Eng., 24, 1143 (2004)
  •  
  • 3. McNamara AJ, Joshi Y, Zhang ZM, Int. J. Therm. Sci., 96, 221 (2015)
  •  
  • 4. Tang B, Hu GX, Gao HY, Hai LY, Int. J. Heat Mass Transf., 85(-), 420 (2015)
  •  
  • 5. Fu Y, He Z, Mo D, Lu S, Appl. Therm. Eng., 66, 493 (2014)
  •  
  • 6. Yim MJ, Li Y, Moon KS, Paik KW, Wong CP, J. Adhes. Sci. Technol., 22(14), 1593 (2008)
  •  
  • 7. Trabelsi W, Mountemor MF, Surf. Coat. Technol., 192, 284 (2005)
  •  
  • 8. Nishiyama N, Asakura T, Horie K, J. Colloid Interface Sci., 124, 14 (1988)
  •  
  • 9. Xie Y, Callum C, Hill AS, Xiao Z, Militz H, Mai C, Compos. Pt. A-Appl. Sci. Manuf., 41, 806 (2010)
  •  
  • 10. Bae YH, Park GD, Jung HO, Vu MC, Kim SR, Polym. Korea, 40(1), 148 (2016)
  •  
  • 11. Akiyama S, Kobori Y, Sugisaki A, Koyama T, Akiba I, Polymer, 41(11), 4021 (2000)
  •  
  • 12. Parvaiz MR, Polym. Compos., 33, 1798 (2012)
  •  
  • 13. Yim A, Chahal RS, St Pierre LE, J. Colloid Interface Sci., 43, 583 (1973)
  •  
  • 14. Czech Z, Int. J. Adhes. Adhes., 26, 414 (2006)
  •  
  • 15. Choi YH, Kang JK, Lee WK, J. Adhesion Interface, 10, 1 (2009)
  •  
  • 16. Sowa D, Czech Z, Byczynski L, Int. J. Adhes. Adhes., 49, 38 (2014)
  •  
  • 17. Yamamoto Y, Fujii S, Shitajima K, Fujiwara K, Hikasa S, Nakamura Y, Polymer, 70(-), 77 (2015)
  •  
  • 18. Lim CH, Ryu H, Cho UR, Polym. Korea, 33(4), 319 (2009)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(5): 722-727

    Published online Sep 25, 2016

  • 10.7317/pk.2016.40.5.722
  • Received on Apr 4, 2016
  • Accepted on Jun 8, 2016