Article
  • Properties of Poly(ether-b-amide)/MMT Composites Prepared with in-situ Polymerized PA12/MMT Nanocomposites
  • Oh CR, Kim HJ
  • In-situ 중합 PA12/MMT 나노복합체로 제조된 Poly(ether-b-amide)/MMT 복합체의 물성
  • 오초록, 김형중
Abstract
PA12/montmorillonite (MMT) nanocomposites (M-PA), polyamide12 (PA12) oligomers intercalated into the crystalline layers of MMT, were synthesized by in-situ polymerization with 4,4'-methylene bis(cyclohexyl amine), 12-aminododecanoic acid, and MMT. Poly(ether-b-amide) (PEBA)/MMT nanocomposites (C-PEBA) consisting of crystalline hard segment and amorphous soft segment from M-PA block and PTMG block repectively were prepared with M-PA and isocyanate terminated poly(tetramethylene glycol) prepolymer by hexamethylene diisocyanate (HDI). As a result, the crystalline melting enthalpy increased up to 5 wt% and then decreased with increasing the MMT content. The maximum strain and strength of the C-PEBA were shown at 3 wt% of MMT content and the values were larger than those of the control PEBA (B-PEBA), simply MMT blended one. However, the permanent setting of C-PEBA decreased with increasing the MMT content, especially at more than 5 wt%, similar to or less than those of Pebax® commercialized PEBA and a typical polyurethane thermoplastic elastomer (TPU).

Polyamide12(PA12) 올리고머가 층간에 삽입된 PA12/montmorillonite(MMT) 나노복합체(M-PA)를 4,4'-methylene bis(cyclohexyl amine)과 12-aminododecanoic acid를 이용하여 in-situ 중합으로 합성하였다. 이를 poly(tetramethylene glycol) (PTMG)의 양 말단에 hexamethylene diisocyanate(HDI)로 isocyanate 작용기를 가지도록 합성한 prepolymer 와 반응시켜 M-PA 부분과 PTMG 부분이 각각 결정성의 hard segment와 soft segment를 형성하는 poly(ether-bamide)s (PEBA)/MMT 복합체(C-PEBA)를 제조하였다. 결과로서 MMT의 함량이 증가함에 따라 hard segment의 결정용융 엔탈피가 5 wt%까지 증가하다 이후 감소하였고, MMT가 단순 혼합된 같은 구조의 PEBA(B-PEBA)보다 최대신율과 강도가 증가하였으며 3 wt%일 때 최대값를 나타냈다. 영구 변형률은 MMT의 함량이 증가함에 따라 감소하였으며 특히 5 wt% 이상에서는 상업화된 PEBA인 Pebax®나 열가소성 폴리우레탄(TPU)보다 낮거나 비슷한 우수한 탄성성질을 가졌다.

Keywords: polyamide12; thermoplastic elastomer; montmorillonite; nanocomposite; in-situ; poly(ether-b-amide)

References
  • 1. Lee YS, Jeong JC, Park JM, Elast. Compos., 45, 245 (2010)
  •  
  • 2. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216 (1994)
  •  
  • 3. Kato C, Kuroda K, Misawa M, Clay Clay Min., 27, 129 (1979)
  •  
  • 4. Suguhara Y, Sugitama T, Nagayama T, Kuroda K, Kato C, J. Ceram. Soc. Jpn., 100, 413 (1992)
  •  
  • 5. Messersmith PB, Giannelis EP, Chem. Mater., 5, 1064 (1993)
  •  
  • 6. Vaia RA, Ishii H, Giannelis EP, Chem. Mater., 5, 1694 (1993)
  •  
  • 7. Fukushima Y, Inagaki S, Inclusion Phenom., 5, 473 (1987)
  •  
  • 8. Fukushima Y, Okada A, Kawasumi M, Kurauchi T, Kamigaito O, Clay Min., 23, 27 (1988)
  •  
  • 9. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1174 (1993)
  •  
  • 10. Lee SS, Park M, Lim S, Kim J, Hwang JT, Polym. Sci. Technol., 18(1), 8 (2007)
  •  
  • 11. Choi MC, Jung JY, Yeom HS, Chang YW, Polym. Eng. Sci., 53(5), 982 (2013)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(4): 635-642

    Published online Jul 25, 2016

  • 10.7317/pk.2016.40.4.635
  • Received on Feb 25, 2016
  • Accepted on Apr 3, 2016