Article
  • 2-(2-Cyanopropyl) Dithiobenzoate-mediated Grafting Polymerization of Methyl Methacrylate from Vinyl Modified Silica
  • Li D, Li G, Zhang Q, Su G, Zhang H
  • 비닐기로 기능화된 실리카로부터 메틸메타크릴레이트의 2-(2-cyanopropyl) Dithiobenzoate에 의한 그래프트 중합
Abstract
Grafting polymerization of methyl methacrylate (MMA) from vinyl modified silica mediated by 2-(2-cyanopropyl) dithiobenzoate was first conducted. Surface radicals generated by the addition reaction of "free" polymeric radicals with surface vinyl could initiate reversible addition-fragmentation chain transfer (RAFT) grafting polymerization of MMA from silica. The RAFT grafting polymerization of MMA from silica exhibited a living character, evident from the linear relationship of grafting ratio with monomer conversion. Grafting polymerization rate appeared dependent on target molecular weight and initiator concentration because of diffusion-controlled RAFT process on silica. The PMMA-grafted silica allowed for a second-step grafting polymerization due to the existence of dithioester group on the chain ends of grafted PMMA. In this case, surface radicals were generated by the reaction of "free" polymeric radicals with the surface RAFT agents, which differed from the RAFT process of grafting polymerization from vinyl modified silica. This method could be extended to prepare a variety of block copolymers from silica.

Keywords: grafting; radical polymerization; reversible addition-fragmentation chain transfer; surface modification; diffusion

References
  • 1. Ponnusamy K, Babu RP, Dhamodharan R, J. Polym. Sci. A: Polym. Chem., 51(5), 1066 (2013)
  •  
  • 2. Glaied O, Delaite C, Riess G, Polym. Bull., 68(3), 607 (2012)
  •  
  • 3. Zhang XW, Lian XM, Liu L, Zhang J, Zhao HY, Macromolecules, 41(21), 7863 (2008)
  •  
  • 4. Rhodes SK, Lambeth RH, Gonzales J, Moore JS, Lewis JA, Langmuir, 25(12), 6787 (2009)
  •  
  • 5. Lu DR, Xiao CM, Sun F, J. Appl. Polym. Sci., 124(4), 3450 (2012)
  •  
  • 6. Gromadzki D, Jigounov A, Stpanek P, Makuka R, Eur. Polym. J., 46, 804 (2010)
  •  
  • 7. Peng Q, Lai DMY, Kang ET, Neoh KG, Macromolecules, 39(16), 5577 (2006)
  •  
  • 8. Komatsu M, Kawakami T, Kanno JI, Sasaki T, J. Appl. Polym. Sci., 115(6), 3369 (2010)
  •  
  • 9. Chen H, Luo YW, Macromol. Chem. Phys., 212, 737 (2011)
  •  
  • 10. Wu DX, Song XH, Tang T, Zhao HY, J. Polym. Sci. A: Polym. Chem., 48(2), 443 (2010)
  •  
  • 11. Li DL, Luo YW, Li BG, Zhu SP, J. Polym. Sci. A: Polym. Chem., 46, 970 (2010)
  •  
  • 12. Yi J, Chen J, Liu ZT, Liu ZW, J. Appl. Polym. Sci., 117(6), 3551 (2010)
  •  
  • 13. Ranjan R, Brittain WJ, Macromol. Rapid Commun., 29(12-13), 1104 (2008)
  •  
  • 14. Islam MR, Bach LG, Lim KT, Appl. Surf. Sci., 276(-), 298 (2013)
  •  
  • 15. Liu QY, Ji ZX, Bei YL, J. Colloid Interface Sci., 394(-), 646 (2013)
  •  
  • 16. Baum M, Brittain WJ, Macromolecules, 35(3), 610 (2002)
  •  
  • 17. Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH, Macromolecules, 36(7), 2256 (2003)
  •  
  • 18. Guo ZX, Yu J, J. Mater. Chem., 12, 468 (2002)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(4): 505-510

    Published online Jul 25, 2016

  • 10.7317/pk.2016.40.4.505
  • Received on Jul 27, 2015
  • Accepted on Apr 7, 2016