Article
  • Striking Dispersion of Recrystallized Poly(ethylene glycol)-Poly(lactic acid) Solvent-Casting Blend
  • Zhu X, Huang R, Zhong T, Wan A
  • 용매 캐스팅 후 재결정화된 Poly(ethylene glycol)-Poly(lactic acid) 블렌드의 두드러진 분산 특성
Abstract
The solvent casted poly(ethylene glycol) (PEG) and poly(lactic acid) (PLA) blend was recrystallized by the thermal treatment of a heating and cooling cycle. The high PEG content blend (30 wt%) showed a striking dispersion behavior, that the materials rapidly dispersed and dissolved in the aqueous environment in a few hours. This phenomenon has not been reported by others, and was not observed in low PEG content samples of 5%, 10%, and 20%, or quenched(amorphous) samples. We hypothesized the mechanism that the chain rearrangement during the thermal treatment leads to the phase separation. And with the phase separation in the recrystallized samples, the PEG potions rapidly dissolved in the aqueous environment, left out the small PLA spherulites being separated and dispersed in the solution. The same underlying reason can also be inferred from the degradation behaviors of other samples. Characterizations of DSC, XRD, and SEM have been done to validate our hypothesis.

Keywords: poly(lactic acid); poly(ethylene glycol); dispersion; degradation; phase separation

References
  • 1. Nampoothiri KM, Nair NR, John RP, Bioresour. Technol., 101(22), 8493 (2010)
  •  
  • 2. Lim LT, Auras R, Rubino M, Prog. Polym. Sci, 33, 820 (2008)
  •  
  • 3. Bordes P, Pollet E, Averous L, Prog. Polym. Sci, 34, 125 (2009)
  •  
  • 4. Rasal RM, Janorkar AV, Hirt DE, Prog. Polym. Sci, 35, 338 (2010)
  •  
  • 5. Yuk KY, Choi YM, Park JS, Kim SY, Park K, Huh KM, Polym.(Korea), 33(5), 469 (2009)
  •  
  • 6. Sheth M, Kumar RA, Dave V, Gross RA, Mccarthy SP, J. Appl. Polym. Sci., 66(8), 1495 (1997)
  •  
  • 7. Serra T, Ortiz-Hernandez M, Engel E, Planell JA, Navarro M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 38, 55 (2014)
  •  
  • 8. Hernandez-Montero N, Ugartemendia JM, Amestoy H, Sarasua JR, J. Polym. Sci. B: Polym. Phys., 52(2), 111 (2014)
  •  
  • 9. Pillin I, Montrelay N, Grohens Y, Polymer, 47(13), 4676 (2006)
  •  
  • 10. Pereira AG, Gouveia RF, de Carvalho GM, Rubira AF, Muniz EC, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 499 (2009)
  •  
  • 11. Zhang Y, Wang Z, Jiang F, Bai J, Wang Z, Soft Matter, 9, 5771 (2013)
  •  
  • 12. Martin O, Averous L, Polymer, 42(14), 6209 (2001)
  •  
  • 13. Qiu ZB, Ikehara T, Nishi T, Polymer, 44(10), 3101 (2003)
  •  
  • 14. Yoon CS, Ji DS, Polym.(Korea), 33(6), 581 (2009)
  •  
  • 15. Kallrot M, Edlund U, Albertsson AC, Biomacromolecules, 8(8), 2492 (2007)
  •  
  • 16. Tsuji H, Ikada Y, J. Appl. Polym. Sci., 63(7), 855 (1997)
  •  
  • 17. Heath D, Cooper S, J. Biomed. Mater. Res. A, 94, 1294 (2010)
  •  
  • 18. Huang R, Zhu X, Tu H, Wan A, Mater. Lett., 136, 126 (2014)
  •  
  • 19. Huang R, Zhu X, Zhao T, Wan A, Mater. Res. Express, 1, 045403 (2014)
  •  
  • 20. Wang C, Feng L, Yang H, Xin G, Li W, Zheng J, Tian J, Li X, Phys. Chem. Chem. Phys., 14, 13233 (2012)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(6): 889-895

    Published online Nov 25, 2015

  • 10.7317/pk.2015.39.6.889
  • Received on May 5, 2015
  • Accepted on Jul 2, 2015