Article
  • Properties of Polyglutamic Acid Produced by Bacillus subtilis ATCC 6633 in Rehydrated Whey Powder Supplemented with Different Carbon Sources
  • Cagri-Mehmetoglu A, van de Venter M
  • 재수화된 유청분말내 Bacillus subtilis ATCC 663에 의해 다른 탄소원들로부터 생산된 폴리글루타믹산의 특징
  • Cagri-Mehmetoglu A, van de Venter M
Abstract
In this study, the use of rehydrated whey powder (RWP) solutions containing different carbon sources (citric acid, ammonium sulfate, or glutamic acid) for γ-poly(glutamic acid) (γ-PGA) by Bacillus subtilis ATCC 6633 was explored. After 72 h of fermentation at 30 oC, cell growth, γ-PGA production, molecular weight by SDS-PAGE, rheological properties and NMR analysis of γ-PGA were determined. The growth of B. subtilis was significantly different during 72 h of fermentation in RWP, medium E, and RWP containing citric acid or glutamic acid. These results showed the dynamic viscosity of the 1% polymer solution was 2.5 Pa·s at 10 1/sec shear rate. The maximum γ-PGA concentration was 1.57 g/100 mL in RWP containing glutamic acid, citric acid and ammonium sulfate. Therefore, RWP as a waste product with being efficient and more economic fermentation medium to produce γ-PGA can be ideal for the industrial production.

Keywords: polyglutamic acid; Bacillus subtilis; whey powder; carbon sources; NMR

References
  • 1. Lintoni JD, Ash SG, Huybrecths L, “Novel materials from biological sources”, in Biomaterials, Byrom D, Editor, Macmillan, Pensylavina State University (1991).
  •  
  • 2. Birrer GA, Cromwick AM, Gross RA, Int. J. Biol. Macromol., 16, 265 (1994)
  •  
  • 3. Cromwick AM, Gross RA, Can. J. Microbiol., 41, 902 (1995)
  •  
  • 4. Cromwick AM, Birrer GA, Gross RA, Biotechnol. Bioeng., 50(2), 222 (1996)
  •  
  • 5. Troy FA, J. Biol. Chem., 248, 305 (1973)
  •  
  • 6. Thorne CB, Gomez CG, Noes HE, Housewright RD, J. Bacteriology, 68, 307 (1954)
  •  
  • 7. Leonard CG, Housewright RD, Throne CB, J. Bacteriol., 76, 499 (1958)
  •  
  • 8. Hara T, Fujito Y, Ueda S, J. Appl. Biochem., 4, 112 (1982)
  •  
  • 9. Cheng C, Asada Y, Aaida T, Agric. Biol. Chem., 53, 2369 (1989)
  •  
  • 10. McLean RC, Beauchemin D, Clapham L, Beveridge TJ, Appl. Environ. Microbiol., 56, 3671 (1990)
  •  
  • 11. Goto A, Kunioka M, Biosci., Biotechnol. Biochem., 56, 1031 (1992)
  •  
  • 12. Kubota H, Nambu Y, Endo T, J. Polym. Sci. A: Polym. Chem., 34(7), 1347 (1996)
  •  
  • 13. Horton BS, Bull. Int. Dairy Fed., 279, 46 (1993)
  •  
  • 14. Mavropoulou I, Kosikowski FV, J. Dairy Sci., 56, 1128 (1973)
  •  
  • 15. Lee SY, Middelberg AP, Lee YK, Biotechnol. Lett., 19(10), 1033 (1997)
  •  
  • 16. Feijoo G, Moreira MT, Roca E, Lema JM, J. Ind. Microbiol. Biotechnol., 23, 86 (1999)
  •  
  • 17. Yagci S, Altan A, Gogus F, Maskan M, Turkish 9th Food Congress, Bolu, Turkey (2006).
  •  
  • 18. Stauffer KR, Leeder JG, J. Food Sci., 43, 756 (1978)
  •  
  • 19. Dlamini AM, Peiris PS, Appl. Microbiol. Biotechnol., 47(1), 52 (1997)
  •  
  • 20. Rech R, Cassini CF, Secchi A, Ayub MAZ, J. Ind. Microbiol. Biotechnol., 23, 91 (1999)
  •  
  • 21. Kayaoglu M, Konar V, Science Engineering Journal of Firat University, 4, 493 (2006)
  •  
  • 22. Cagri-Mehmetoglu A, Kusakli S, van de Venter M, J. Dairy Sci., 95, 3643 (2012)
  •  
  • 23. de Brouwer JFC, Wolfstein K, Stal LJ, Eur. J. Pharmacol., 37, 37 (2002)
  •  
  • 24. Hanson RS, Phillips JA, “Chemical composition”, in Manual of Methods for General Bacteriology, Gerhandt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB, Editors, American Society for Microbiology, Washington, DC, p 328 (1981).
  •  
  • 25. SAS Institute, SAS/STAT User’s Guide, SAS Institute, Cary, NC, Release 8.0, p 340 (1990).
  •  
  • 26. Kunioka M, Goto A, Appl. Microbiol. Biotechnol., 40(6), 867 (1994)
  •  
  • 27. Huang J, Du Y, Xu G, Zhang H, Zhu F, Huang L, Xu Z, Eng. Life Sci., 11, 291 (2011)
  •  
  • 28. Du G, Yang G, Qu Y, Chen J, Lun S, Process Biochem., 40, 2143 (2005)
  •  
  • 29. Xu H, Jiang M, Li H, Lu D, Ouyang P, Process Biochem., 40, 519 (2005)
  •  
  • 30. Zhang D, Feng XH, Zhou Z, Zhang Y, Xu H, Bioresour. Technol., 114(-), 583 (2012)
  •  
  • 31. Jian X, Shouwen C, Ziniu Y, Process Biochem., 40, 3075 (2005)
  •  
  • 32. Kunioka M, Appl. Microbiol. Biotechnol., 47(5), 469 (1997)
  •  
  • 33. Bajaj I, Singhal R, Bioresour. Technol., 102(10), 5551 (2011)
  •  
  • 34. Shih IL, Van YT, Bioresour. Technol., 79(3), 207 (2001)
  •  
  • 35. Werner F, Mersmann A, Chem. Eng. Technol., 21(7), 559 (1998)
  •  
  • 36. Wu JY, Ye HF, Process Biochem., 42, 1114 (2007)
  •  
  • 37. Perez-Camero G, Congregado F, Bou JJ, Munoz-Guerra S, Biotechnol. Bioeng., 63(1), 110 (1999)
  •  
  • 38. Konna A, Kaneko M, Biopolymer, 19, 453 (1969)
  •  
  • 39. Ho GH, Ho TI, Hsieh KH, Su YC, Line PY, Yanga J, Yanga KH, Yang SH, J. Chin. Chem. Soc., 53, 1363 (2006)
  •  
  • 40. Werner F, Mersmann A, Chem. Eng. Technol., 21(8), 644 (1998)
  •  
  • 41. Kambourova M, Tangney M, Priest F, Appl. Environ. Microbiol., 67, 1004 (2001)
  •  
  • 42. King EC, Blacker AJ, Bugg TDH, Biomacromolecules, 1(1), 75 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(5): 801-808

    Published online Sep 25, 2015

  • 10.7317/pk.2015.39.5.801
  • Received on Mar 11, 2015
  • Accepted on Apr 18, 2015