Article
  • Phase Morphology and Mechanical Properties of Ethylene-Propylene-Diene-Monomer/Fluoroelastomer Blends
  • Lee GB, Kim SG, Yoo YH, Kang SI, Oh JG, Huh YI, Jeong BH, Nah C
  • 에틸렌-프로필렌-디엔-모노머/불소고무 블렌드의 상 모폴로지와 기계적 물성
  • 이기쁨, 김승겸, 유용환, 강석인, 오종갑, 허양일, 정병헌, 나창운
Abstract
Rubber blends based on ethylene-propylene-diene-monomer (EPDM) rubber and fluoroelastomer (FKM) having various blend ratios were prepared. The phase morphology, cure characteristics, hardness, tensile and dynamic viscoelastic properties of the blends were investigated. The cure rate of the blends increased, while the crosslink-density decreased as the FKM content increased. The hardness, tensile strength and elongation at break, and storage modulus (E') increased with increasing FKM loading. A typical incompatible blend behavior was found by observing two distinct tanδ peaks corresponding to EPDM and FKM. Based on the morphology investigation by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) analyses, a typical 'sea-island' phase morphology was observed for the EPDM/FKM blends. As the FKM loading was increased to 50 phr, the EPDM was found to remain as the continuous phase. At the 80 phr of FKM, a co-continuous phase was observed and the phase inversion was observed at 90 phr of FKM.

에틸렌-프로필렌-디엔-모노머(EPDM) 고무와 불소고무(FKM)를 다양한 조성으로 블렌드를 제조하여 조성에 따른 상 모폴로지와 가교특성, 경도특성, 인장특성 그리고 동적 점탄성 특성을 조사하였다. FKM 함량이 증가할수록 가교속도는 증가한 반면 가교밀도는 감소하였으며, 전반적으로 경도, 인장강도, 파단신장률 및 저장 모듈러스(E')는 증가하였다. 모든 블렌드 컴파운드에서 EPDM과 FKM 고유의 유리전이온도(Tg)를 나타내고 있어, 전형적인 비혼화성 블렌드 거동을 보였다. 전자현미경(SEM)과 원소분석장치(EDS)를 이용하여 상 거동을 관찰한 결과 EPDM/FKM 블렌드는 비혼화성 블렌드의 대표적인 상거동인 연속상-분산상 모폴로지를 나타내었다. FKM 조성이 50 phr 이하에서는 EPDM이 연속상을 나타내었고, FKM이 80 phr 근방에서 공동 연속상 구조를 그리고 FKM이 90 phr에서는 FKM이 연속상을 나타내는 상전이가 나타났다.

Keywords: ethylene-propylene-diene-monomer; fluoroelastomer; blend; phase morphology; energy dispersive X-ray spectroscopy; inversion

References
  • 1. Parthasarathy A, Srinivasan S, Electroanal. Chem., 339, 101 (1992)
  •  
  • 2. Mauritz KA, Moore RB, Chem. Rev., 104(10), 4535 (2004)
  •  
  • 3. Mitra S, Ghanbari-Siahkali A, Kingshott P, Almdal K, Rehmeier HK, Christensen AG, Polym. Degrad. Stabil., 83, 195 (2004)
  •  
  • 4. Schulze M, Knori T, Schneider A, Gulzow E, J. Power Sources, 127(1-2), 222 (2004)
  •  
  • 5. Husar A, Serra M, Kunusch C, J. Power Sources, 169(1), 85 (2007)
  •  
  • 6. Choi WS, Kim GW, Do JS, Yoo MH, Ryu SH, Elast. Compos., 46, 132 (2011)
  •  
  • 7. Seo KH, Cho KS, Yun IS, Choi WH, Hur BK, Kang DG, Elast. Compos., 45, 212 (2010)
  •  
  • 8. Cleghorn SJC, Mayfield DK, Moore DA, Moore JC, Rusch G, Sherman TW, Sisofo NT, Beuscher U, J. Power Sources, 158(1), 446 (2006)
  •  
  • 9. St-Pierre J, Jia N, J. New Mater. Electrochem. Syst., 5, 263 (2002)
  •  
  • 10. Sammes N, Fuel Cell Technology: Reaching Towards Commercialization, Springer Publishers, New York, 2006.
  •  
  • 11. Neburchilov V, Martin J, Wang HJ, Zhang JJ, J. Power Sources, 169(2), 221 (2007)
  •  
  • 12. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
  •  
  • 13. Khorasani MRA, Asghari S, Mokmeli A, Shahsamandi MH, Imani BF, Int. J. Hydrog. Energy, 35(17), 9269 (2010)
  •  
  • 14. Kim HG, Nah SC, New Renewable Energy & Fuel Cell, Studies Information, 2006.
  •  
  • 15. Basuli U, Jose J, Lee RH, Yoo YH, Jeong KU, Ann JH, Nah C, J. Nanosci. Nanotechnol., 12, 7641 (2012)
  •  
  • 16. Basuli U, Jose J, Lee RH, Yoo YH, Jeong KU, Ahn JH, Nah C, J. Nanosci. Nanotechnol., 12, 7641 (2012)
  •  
  • 17. Kim DH, Hwang SH, Kim BS, J. Appl. Polym. Sci., 125(2), 1625 (2012)
  •  
  • 18. Nair AB, Kurian P, Joseph R, Mater. Des., 36, 767 (2012)
  •  
  • 19. Wang Y, Liu L, Luo Y, Jia D, Polym. Degrad. Stabil., 94, 443 (2009)
  •  
  • 20. Nair AB, Kurian P, Joseph R, Eur. Polym. J., 49, 247 (2013)
  •  
  • 21. Chung YK, Lee SG, Cho BR, Choi KY, Polym.(Korea), 29(2), 166 (2005)
  •  
  • 22. da Silva ALN, Coutinho FMB, Polym. Test, 15, 45 (1996)
  •  
  • 23. Lee JC, Kim TG, Hwang KS, Ha KR, Elastomer, 43, 8 (2008)
  •  
  • 24. Gomaa E, J. Appl. Polym. Sci., 105(5), 2564 (2007)
  •  
  • 25. Chowdhury R, Banerji MS, Shivakumar K, J. Appl. Polym. Sci., 100(2), 1008 (2006)
  •  
  • 26. Kole S, Bhattacharya A, Tripathy DK, Bhowmick AK, J. Appl. Polym. Sci., 48, 529 (1993)
  •  
  • 27. Konar J, Kole S, Avasthi BN, Bhowmick AK, J. Appl. Polym. Sci., 61(3), 501 (1996)
  •  
  • 28. Kole S, Roy S, Bhowmick AK, Polymer, 36(17), 3273 (1995)
  •  
  • 29. Favis BD, J. Appl. Polym. Sci., 39, 285 (1990)
  •  
  • 30. Lee SG, Lee JH, Choi KY, Rhee JM, Polym.(Korea), 22(2), 258 (1998)
  •  
  • 31. Choi SS, Kim OB, Elast. Compos., 46, 138 (2011)
  •  
  • 32. Choi SS, Hwang KJ, Kim BT, J. Appl. Polym. Sci., 98(5), 2282 (2005)
  •  
  • 33. Choi SS, Park BH, Song H, Polym. Adv. Technol., 15, 122 (2004)
  •  
  • 34. Ameduri B, Boutevin B, Kostov G, Prog. Polym. Sci, 26, 105 (2001)
  •  
  • 35. Chen CH, Larue JC, Nelson RD, Kulinsky L, Madou MJ, J. Appl. Polym. Sci., 125(4), 3134 (2012)
  •  
  • 36. Wang H, Composto RJ, Europhys. Lett., 50, 622 (2000)
  •  
  • 37. Li L, Shen X, Hong SW, Hayward RC, Russell TP, Angew. Chem.-Int. Edit., 51, 4089 (2012)
  •  
  • 38. Novelloa MV, Carreiraa LG, Canto LB, Mater. Res., 17, 1285 (2014)
  •  
  • 39. Choi SS, Joo CW, Kim DC, Elastomer, 37, 14 (2002)
  •  
  • 40. Paul DR, Newman S, Polymer Blends, Academic Press, New York, 1978.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(5): 754-760

    Published online Sep 25, 2015

  • 10.7317/pk.2015.39.5.754
  • Received on Feb 15, 2015
  • Accepted on Mar 11, 2015