Article
  • Effect of BF3 Inclusion on Poly(POEM-co-AMPSLi) Single-ion Polymer Electrolytes
  • Choi DI, Ryu SW
  • 단일이온 Poly(POEM-co-AMPSLi) 전해질에 대한 BF3 첨가효과
  • 최다인, 류상욱
Abstract
Single-ion conducting poly(POEM-co-AMPSLi)s were prepared by a radical polymerization of various amount of poly(ethylene glycol) methyl ether methacryate (POEM) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) followed by a titration with Li2CO3. The electrochemical properties and an effect of BF3inclusion on the ionic conductivity and thermal properties were investigated. The obtained polymer electrolytes showed electrochemical stability up-to 6 V and 0.93 of lithium ion transference number suggested that the electrolytes are one of the single-ion conductors but only 3.2×10-7 S/cm of room temperature ionic conductivity was observed. However, there was a dramatic increase of room temperature ionic conductivity after inclusion of BF3 and 1.3×10-5 S/cm was observed in polymer electrolyte with [EO]:[Li] ratio of 27:1. Furthermore, the inclusion of BF3 decreases the crystalline melting temperature of polymer electrolytes by increasing the coordination between lithium ion and ethylene oxide unit in the polymer matrix.

본 연구에서는 다양한 조성의 poly(ethylene glycol) methyl ether methacryate(POEM)과 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPS)를 함유하는 공중합체를 합성하고 Li2CO3와의 적정반응을 통해 단일이온 전도성 poly(POEM-co-AMPSLi)를 제조하여 전기화학적 특성을 평가하였다. 또한 고분자전해질에 BF3를 첨가하여 루이스산이 이온전도도 및 열적특성에 미치는 영향을 평가하였다. 제조된 고분자전해질은 0.93의 리튬이온 수송률이 관찰되어 단일이온 전도체임을 확인하고 6 V까지 전기화학적 안정성을 보여주었지만, 3.2×10-7 S/cm의 낮은 상온 이온전도도가 관찰되었다. 하지만, 고분자전해질에 대한 BF3첨가는 이온간 해리를 가능하게 하여 상온 이온전도도의 경우 [EO]:[Li] 비율 27:1에서 최대 1.3×10-5 S/cm의 높은 값을 얻을 수 있었다. 나아가 BF3 첨가는 리튬이온과 ethylene oxide기의 배위를 증가시켜 결과적으로 고분자전해질의 결정용융온도를 감소시키는 효과도 함께 나타내었다.

Keywords: polymer electrolytes; single-ion conductor; Lewis acid; ionic conductivity; melting temperature

References
  • 1. Zhang SS, Yang LL, Liu QG, Solid State Ion., 76(1-2), 121 (1995)
  •  
  • 2. Cowie JMG, Spence GH, Solid State Ion., 123(1-4), 233 (1999)
  •  
  • 3. Watanabe M, Tokuda H, Muto S, Electrochim. Acta, 46(10-11), 1487 (2001)
  •  
  • 4. Sun XG, Hou J, Kerr JB, Electrochim. Acta, 50(5), 1139 (2005)
  •  
  • 5. MacCallum J, Vincent C, Polymer Electrolyte Reviews-1, Elsevier Applied Science, New York, 1987.
  •  
  • 6. Nazri GA, Pistoia G, Lithium Batteries Science and Technology, Kluwer Academic Publishers, New York, 2004.
  •  
  • 7. Yosho M, Brodd R, Kozawa A, Lithium-ion Batteries, Springer, New York, 2009
  •  
  • 8. Kato Y, Yokoyama S, Yabe T, Ikuta H, Uchimoto Y, Wakihara M, Electrochim. Acta, 50(2-3), 281 (2004)
  •  
  • 9. Sadoway DR, Huang BY, Trapa PE, Soo PP, Bannerjee P, Mayes AM, J. Power Sources, 97-98(-), 621 (2001)
  •  
  • 10. Park CH, Sun YK, Kim DW, Electrochim. Acta, 50(2-3), 375 (2004)
  •  
  • 11. Sun J, MacFarlane DR, Forsyth M, Solid State Ion., 147(3-4), 333 (2002)
  •  
  • 12. Florjanczyk Z, Bzducha W, Langwald N, Dygas JR, Krok F, Misztal-Faraj B, Electrochim. Acta, 44, 3563 (2000)
  •  
  • 13. Ryu SW, Trapa PE, Olugebefola SC, Gonzalez-Leon JA, Sadoway DR, Mayes AM, J. Electrochem. Soc., 152(1), A158 (2005)
  •  
  • 14. Kang WC, Park HG, Kim KC, Ryu SW, Electrochim. Acta, 54(19), 4540 (2009)
  •  
  • 15. Kim KC, Ryu SW, J. Korean Electrochem. Soc., 15, 230 (2012)
  •  
  • 16. Choi DI, Ryu SW, J. Korean Electrochem. Soc., 17, 65 (2014)
  •  
  • 17. Bruce P, Vincent C, J. Electroanal. Chem., 225, 1 (1987)
  •  
  • 18. Mauro V, D'Aprano A, Croce F, Salomon M, J. Power Sources, 141(1), 167 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(4): 621-626

    Published online Jul 25, 2015

  • 10.7317/pk.2015.39.4.621
  • Received on Dec 31, 2014
  • Accepted on Feb 4, 2015