Article
  • Characteristics of Heat Curable Polyorganosiloxane Coating Materials
  • Lee JH, Kang DW, Kang HJ
  • 페닐기 함유 열경화성 폴리유기실록산 코팅제 특성
  • 이진혁, 강두환, 강호종
Abstract
Polyorganosiloxane having controlled cross-linking density and phenyl group content were prepared by dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS) and phenyltrimethoxysilane (PTMS). The effect of cross-linking density and phenyl group content on the physical properties of siloxane resin and its coated film have been invetigated. Si-NMR results confirmed that synthesized siloxane resins have equivalent D TMe TPh structures according to applied mole ratios of DMDMS, MTMS and PTMS. Polyorganosiloxane having higher cross-linking density with high phenyl content showed the high molecular weight and increasing phenyl content resulted in higher refractive index as well as better thermal stability. Cross-linking density is more important factor than phenyl content to obtain higher pencil hardness of coated film on the glass. Our results concluded that even polyorganosiloxanes having similar siloxane structures show different physical properties as function of cross-linking density and phenyl content in polyorganosiloxane.

Dimethyldimethoxysilane(DMDMS), methyltrimethoxysilane(MTMS)과 phenyltrimethoxysilane(PTMS)을 이용하여 폴리유기실록산 열 경화성 코팅액을 제조하고 가교도와 페닐기 함량이 코팅액과 도막 물성에 미치는 영향을 살펴보았다. Si-NMR 측정에서 얻어진 D TMe TPh 구조 코팅액 조성비가 사용된 DMDMS, MTMS, PTMS의 몰 비로부터 얻어진 이론치와 일치함을 확인할 수 있었다. 가교밀도가 높을수록 그리고 페닐 함량이 낮을수록 실록산 결합의 증가에 의하여 코팅액 분자량이 증가됨을 알 수 있으며 페닐기 증가는 코팅액 굴절률 증가에 매우 큰 영향을미침을 알 수 있었다. 가교밀도가 높을수록, 페닐기 함량이 감소할수록 코팅도막 경도는 증가되었으며 내열특성 또한 우수해짐을 확인할 수 있었다. 이상의 결과로부터 같은 실록산 결합을 갖는 폴리유기실록산 코팅제라도 치환도 에 따른 가교도 조절과 페닐기 함량에 따라 코팅액 물성이 달라짐을 확인할 수 있었다.

Keywords: siloxane resin; DT structure; degree of cross-linking; phenyl contents; refractive index; pencil hardness

References
  • 1. Jung IN, 3rd Generation Silicone Chemistry, Free Academy, Seoul, Korea, p 398 (2009). (2009)
  •  
  • 2. Noll W, Chemistry and Technology of Silicone, Academic Press, New York, p 573 (1968). (1968)
  •  
  • 3. Stark FO, Falender JR, Wright AP, Silicones, Comprehensive Organometallic Chemistry, Pergamon Press, Exeter, Vol 2, p 305 (1982). (1982)
  •  
  • 4. Freeman GG, Silicones: An Introduction to Their Chemistry and Applications, Iliffe Books, London, p 119 (1962). (1962)
  •  
  • 5. Zaikov GE, Degradation and Stabilization of Polymers: Theory and Practice, Nova Publishers, New York, p 238 (1995). (1995)
  •  
  • 6. Heilen W, Silicone Resins and Their Combinations, Vincent Network GmbH & Co. KG, Hannover, p 102 (2005). (2005)
  •  
  • 7. McGregor RR, Silicones and Their Uses, Mellon Institute, McGraw-Hill, New York, p 302 (1954). (1954)
  •  
  • 8. Tomanek A, Silicones & Industry: A Compendium for Practical Use, Instruction and Reference, Hanser Gardner Pubns, Munich, Germany, p 172 (1993). (1993)
  •  
  • 9. Cottrell TL, The Strength of Chemical Bonds, 2nd Ed., Butterworths Publications, New York, p 317 (1958). (1958)
  •  
  • 10. Plueddeman EP, Silane Coupling Agents, Springer, New York, p 235 (1982). (1982)
  •  
  • 11. Lee JH, Kang SH, Park JY, An JM, Park JH, Yoo JH, Korean Patent 10-2011-0070546 (2013). (2013)
  •  
  • 12. Smith AL, The Analytical Chemistry of Silicones, John Wiley & Sons, Inc., Midland, p 576 (1991). (1991)
  •  
  • 13. Makoto Y, Koji N, Masashi M, Kasumi T, Korean Patent 10-2005-7007440 (2005). (2005)
  •  
  • 14. Kim JS, Yang SC, Kwak SY, Choi Y, Paik KW, Bae BS, J. Mater. Chem., 22, 7954 (2012)
  •  
  • 15. Thompson DS, Boardman LD, Leatherdale CA, US Patent 7655486 B2 (2010). (2010)
  •  
  • 16. Dvornic PR, Owen MJ, Silicon-Containing Dendritic Polymers, Springer, Midland, p 444 (2009). (2009)
  •  
  • 17. Arkles B, Steinmetz JR, Zazyczny J, Mehta P, J. Adhes. Sci. Technol., 6, 193 (1992)
  •  
  • 18. Jiang H, Zheng Z, Wang X, Vib., 46, 1 (2008)
  •  
  • 19. Schmidt H, Scholze H, Kaiser A, J. Non-Cryst. Solids, 63, 1 (1984)
  •  
  • 20. Garcia N, Benito E, Guzman J, Tiemblo P, J. Am. Chem. Soc., 129(16), 5052 (2007)
  •  
  • 21. Bernards TNM, Van Bommel MJ, Boonstra AH, J. Non-Cryst. Solids, 134, 1 (1991)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(3): 499-505

    Published online May 25, 2015

  • 10.7317/pk.2015.39.3.499
  • Received on Dec 24, 2014
  • Accepted on Feb 4, 2015