Article
  • Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites
  • Yeom HY, Na HY, Lee SJ
  • 산화 그래핀과 나노 흑연이 폴리스티렌 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향
  • 염효열, 나효열, 이성재
Abstract
Carbon-based nanoplatelets such as graphene oxide (GO) sheets and graphite nanoplatelets (GNPs) are frequently used as conductive nanofillers for polymer nanocomposites. In this study, polystyrene (PS)/GO and PS/GNP nanocomposites were prepared through a latex technology and investigated to compare the effect of nanofillers on rheological and electrical properties of the PS nanocomposites. PS particles were prepared by emulsifier-free emulsion polymerization and GO was synthesized by using the modified Hummers' method from graphite. Hydrophilic GO was dispersed in aqueous PS suspension, but hydrophobic GNPs were dispersed with the help of a surfactant. In comparison with PS/GO nanocomposites, the rheological properties of PS/GNP counterparts were not too high because GNP existed in aggregates of graphene layers. Conducting pathways of PS/GO and PS/GNP nanocomposites were achieved at the electrical percolation threshold of 0.50 and 5.82 wt%, respectively. The reason for enhanced electrical conductivity in PS/GO nanocomposites is that GO was thermally reduced during molding.

탄소기반 판상형 나노재료인 산화 그래핀(GO)과 나노 흑연(GNP)은 고분자재료에 전기 전도성을 부여하기 위한 복합재료용 나노필러로 사용되고 있다. 본 연구에서는 폴리스티렌(PS)에 나노필러를 첨가한 PS/GO와 PS/GNP 나노복합재료를 라텍스 기법으로 제조한 다음 유변학적, 전기적 물성을 비교 고찰하였다. PS 입자는 무유화제 유화 중합으로 중합하였으며, GO는 흑연으로부터 modified Hummers 방법으로 합성하였다. 친수성인 GO는 첨가제 없이 PS 수성 현탁액에 분산하였으며, GNP는 분산성을 높이기 위해 계면활성제를 첨가하여 분산하였다. 나노필러에 따른 유변물성은 GO가 GNP에 비해 높게 나타났는데, GO는 단일층으로 분산이 가능한 반면, GNP는 다수의 층이 겹쳐진 형태이므로 나노 규모의 균질한 분산을 이루지 못하기 때문이다. 전도성 통로가 형성되는 지점인 전기적 임계점은 PS/GO, PS/GNP 나노복합재료에 대하여 각각 0.50, 5.82 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전 기 전도도를 보여주는 이유는 성형 시 열처리에 의해 GO가 환원되기 때문이다.

Keywords: nanocomposite; graphene oxide; graphite nanoplatelets; rheological properties; electrical percolation threshold.

References
  • 1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
  •  
  • 2. Yin G, Zheng Z, Wang H, Du Q, Zhang H, J. Colloid Interf. Sci., 394, 192 (2013)
  •  
  • 3. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
  •  
  • 4. Stankovich S, Dikin DA, Dommett GHB, Kohlhass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff R, Nature, 442, 282 (2006)
  •  
  • 5. Lee W, Lee JU, Jung BM, Byun JH, Yi JW, Lee SB, Kim BS, Carbon, 65, 296 (2013)
  •  
  • 6. Jiang S, Gui Z, Bao C, Dai K, Wang X, Zhou K, Shi Y, Lo S, Hu Y, Chem. Eng. J., 226, 326 (2013)
  •  
  • 7. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK, Proc. Natl. Acad. Sci. USA, 102, 10451 (2005)
  •  
  • 8. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA, Science, 312, 1191 (2006)
  •  
  • 9. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH, Nature, 457, 706 (2009)
  •  
  • 10. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM, Nature, 458, 872 (2009)
  •  
  • 11. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  •  
  • 12. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  •  
  • 13. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3(2), 101 (2008)
  •  
  • 14. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
  •  
  • 15. Wang J, Zhou T, Deng H, Chen F, Wang K, Zhang Q, Fu Q, Colloid Surf. B, 101, 171 (2013)
  •  
  • 16. Chen W, Yan L, Bangal PR, Carbon, 48, 1146 (2010)
  •  
  • 17. Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D, Ruoff RS, ACS Nano, 4, 1227 (2010)
  •  
  • 18. Raza MA, Westwood A, Brown A, Hondow N, Stirling C, Carbon, 49, 4269 (2011)
  •  
  • 19. Wakabayashi K, Brunner PJ, Masuda J, Hewlett SA, Torkelson JM, Polymer, 51(23), 5525 (2010)
  •  
  • 20. Li Y, Zhu J, Wei S, Ryu J, Sun L, Guo Z, Macromol. Chem. Phys., 212, 1951 (2011)
  •  
  • 21. Ansari S, Giannelis EP, J. Polym. Sci. B: Polym. Phys., 47(9), 888 (2009)
  •  
  • 22. Kang MH, Noh WJ, Woo DK, Lee SJ, Polym.(Korea), 36(3), 364 (2012)
  •  
  • 23. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD, Chem. Mater., 11, 771 (1999)
  •  
  • 24. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)
  •  
  • 25. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK, Aksay IA, Chem. Mater., 19, 4396 (2007)
  •  
  • 26. Ju HM, Huh SH, Choi SH, Lee HL, Mater. Lett., 64, 357 (2010)
  •  
  • 27. Paine AJ, Luymes W, McNulty J, Macromolecules, 23, 3104 (1990)
  •  
  • 28. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI, Macromolecules, 37(24), 9048 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(4): 502-509

    Published online Jul 25, 2014

  • Received on Jan 23, 2014
  • Accepted on Feb 27, 2014