Article
  • Preparation and Characterization of Poly(lactic acid) Nanocomposites Reinforced with Lignin-containing Cellulose Nanofibrils
  • Sun H, Wang X, Zhang L
  • 리그닌 함유 셀룰로오스 나노섬유로 강화된 폴리락틴산 나노복합재의 제조 및 분석
Abstract
A chemo-mechanical method was used to prepare lignin-containing cellulose nanofibrils(L-CNF) from unbleached woodpulps dispersed uniformly in an organic solvent. L-CNF/PLA composites were obtained by solvent casting method. The effects of L-CNF concentration on the composite performances were characterized by tensile test machine, contact angle machine, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The tensile test results indicated that the tensile strength and elongation-at-break increased by 50.6% and 31.8% compared with pure PLA. The contact angle of PLA composites decreased from 79.3o to 68.9°. The FTIR analysis successfully showed that L-CNF had formed intermolecular hydrogen bonding with PLA matrix.

Keywords: lignin-containing cellulose nanofibrils; poly(lactic acid); nanocomposites; reinforcement.

References
  • 1. Green E, Stutte E, Harrison PTC, Sci. Total Environ., 256, 205 (2006)
  •  
  • 2. Yang JH, Yu JG, Feng Y, Carbohydr. Polym., 69, 256 (2006)
  •  
  • 3. Mangiacapra P, Gorrasi G, Sorrentino A, Carbohydr. Polym., 64, 516 (2005)
  •  
  • 4. Marras SI, Zuburtikudis I, Eur. Polym. J., 43, 2191 (2007)
  •  
  • 5. Anuar H, Zuraida A, Kovacs JG, J. Thermoplast. Compos., 25, 153 (2012)
  •  
  • 6. Taib RM, Ghaleb ZA, Ishak ZAM, J. Appl. Polym. Sci., 123(5), 2715 (2012)
  •  
  • 7. Farhoodi M, Dadashi S, Mousavi SMA, Sotudeh-Gharebagh R, Emam-Djomeh Z, Oromiehie A, Hemmati F, Polym.(Korea), 36(6), 745 (2012)
  •  
  • 8. Wu CS, Micromol. Biosci., 8, 560 (2008)
  •  
  • 9. Xiao B, Sun XF, Sun R, Polym. Degrad. Stab., 71, 223 (2001)
  •  
  • 10. Chun LJ, Yong H, Polym. Int., 52, 949 (2003)
  •  
  • 11. Beck-Candanedo S, Roman M, Gray DG, Biomacromolecules, 6(2), 1048 (2005)
  •  
  • 12. Bondeson D, Mathew A, Oksman K, Cellulose, 13, 171 (2006)
  •  
  • 13. Takahashi N, Okubo K, Bamboo. J., 22, 81 (2005)
  •  
  • 14. Tao W, Lawrence DT, ACS Appl. Mater. Interfaces, 10, 1021 (2010)
  •  
  • 15. Angles MN, Dufresne A, Macromolecules, 34(9), 2921 (2001)
  •  
  • 16. Samir MASFA, Alloin F, Sanchez JY, Dufresne A, Macromolecules, 37(13), 4839 (2004)
  •  
  • 17. Wu CS, Liao HT, Polymer, 46(23), 10017 (2005)
  •  
  • 18. Kang KS, Kim BS, Jang WY, Shin BY, Polymer(Korea), 32, 164 (2009)
  •  
  • 19. Spence KL, Venditti RA, Rojas OJ, Cellulose, 17, 835 (2010)
  •  
  • 20. Lee SH, Kim D, Kim JH, Lee DH, Sim SJ, Nam JD, Kye H, Lee Y, Polym.(Korea), 28(6), 519 (2004)
  •  
  • 21. Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD, J. Mater. Sci., 47(6), 2675 (2012)
  •  
  • 22. Lee JH, Lee YH, Lee DS, Lee YK, Nam JD, Polym.(Korea), 29(4), 375 (2005)
  •  
  • 23. Oksman K, Mathew AP, Bondeson D, Compos. Sci. Technol., 66, 2776 (2006)
  •  
  • 24. Kadla JF, Kubo S, Composites A, 35, 395 (2004)
  •  
  • 25. Mousaviouna P, William OS, Georgeb G, Ind. Crop. Prod., 32, 656 (2010)
  •  
  • 26. Agarwal M, Koelling KW, Chalmers JJ, Biotechnol. Prog., 14(3), 517 (1998)
  •  
  • 27. Miyata T, Masuko T, Polymer, 39, 551 (1998)
  •  
  • 28. Barsbay M, Guner A, Carbohydr. Polym., 69, 214 (2007)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2014; 38(4): 464-470

    Published online Jul 25, 2014

  • Received on Dec 23, 2013
  • Accepted on Feb 18, 2014