Article
  • Polymerization of L-lactide Using Organometallic Aluminium Compound Supported inside Nanopores of Silica
  • Yim JH, Ko YS
  • 실리카 나노기공내 담지된 알루미늄계 유기금속화합물을 이용한 L-lactide 중합
  • 임진형, 고영수
Abstract
In this study, the bulk polymerizations of L-lactide were carried out with triethylaluminium (TEAL), which was supported inside of the nanopore of silica. The feed amount of TEAL in the feed, the immobilization time and temperature were changed to observe the effect of immobilization condition on the polymerization performance with the silica-supported TEAL. As the feed amount of TEAL increased, the conversion of polymerization increased. The highest molecular weight (MW) was achieved at 8 mmol/g-silica of TEAL. Hexane and toluene as solvents were employed to investigate the effect of temperature on the immobilization. Hexane showed better efficiency of immobilization TEAL and the immobilization temperature at 50 ℃ showed the highest conversion and MW.

본 연구에서는 polylactide(PLA) 중합 촉매로 알루미늄계 유기금속화합물인 triethylaluminium(TEAL)을 이용 하여 실리카에 담지하고 이를 이용하여 L-lactide 벌크중합을 진행하였다. TEAL을 실리카에 담지하기 위해 촉매 투입량, 담지시간, 담지온도를 변화시켜 촉매를 합성하고 이를 이용하여 생성된 PLA의 중합특성을 확인하였다. 담지된 촉매 투입량이 증가할수록 전환율이 높고 촉매 투입량이 8 mmol/g-silica일 경우에 가장 높은 분자량을 보였다. 담지시간을 변화시켜 합성된 담지촉매를 이용하여 중합한 결과 담지시간이 증가할수록 전환율 및 분자량이 증가하였다. 담지온도를 변화시켜 촉매를 합성하기 위해 용매로 hexane과 toluene을 사용하였다. 담지온도를 변화시켜 합성된 촉매로 L-lactide 중합한 결과, hexane을 용매로 사용하고 담지온도가 50 ℃일 경우에 전환율 및 분자량이 높았다.

Keywords: polylactide; triethylaluminium; supported catalyst; silica; L-lactide.

References
  • 1. Willke T, Vorlop KD, Appl. Microbiol. Biotechnol., 66(2), 131 (2004)
  •  
  • 2. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S, Int. J. Mol. Sci., 10(9), 3722 (2009)
  •  
  • 3. Nampoothiri KM, Nair NR, John RP, Bioresour. Technol., 101(22), 8493 (2010)
  •  
  • 4. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM, Biotechnol. Adv., 30, 321 (2012)
  •  
  • 5. Agarwal M, Koelling KW, Chalmers JJ, Biotechnol.Progr., 14, 517 (1998)
  •  
  • 6. Yoo JY, Kim DH, Ko YS, Polym.(Korea), 36(5), 593 (2012)
  •  
  • 7. Noh YH, Ko YS, Polym.(Korea), 36(1), 53 (2012)
  •  
  • 8. Kim E, Shin EW, Yoo IK, Chung JS, J. Mol. Catal. A-Chem., 298(1-2), 36 (2009)
  •  
  • 9. Aubrecht KB, Hillmyer MA, Tolman WB, Macromolecules, 35(3), 644 (2002)
  •  
  • 10. Chmura AJ, Cousins DM, Davidson MG, Jones MD, Lunn MD, Mahon MF, Dalton Trans., 11, 1437 (2008)
  •  
  • 11. Chisholm MH, Gallucci JC, Phomphrai K, Inorg. Chem., 44(22), 8004 (2005)
  •  
  • 12. Chisholm MH, Gallucci JC, Phomphrai K, Inorg. Chem., 43(21), 6717 (2004)
  •  
  • 13. Mehta R, Kumar V, Bhunia H, Upadhyay SN, J.Macromol. Sci. Part C: Polym. Rev., 45, 325 (2005)
  •  
  • 14. Garlotta D, J. Polym. Environ., 9, 63 (2001)
  •  
  • 15. Yoo JY, Ko YS, Polym.(Korea), 36(6), 693 (2012)
  •  
  • 16. Kim E, Shin EW, Yoo IK, Chung JS, Hong YJ, Kim YJ, Macromol. Res., 17(5), 346 (2009)
  •  
  • 17. Prebe A, Alcouffe P, Cassagnau P, Gerard JF, Mater. Chem. Phys., 124(1), 399 (2010)
  •  
  • 18. Severn JR, Chadwick JC, Duchateau R, Friederichs N, Chem. Rev., 105(11), 4073 (2005)
  •  
  • 19. Miola C, Hamaide T, Spitz R, Polymer, 38(22), 5667 (1997)
  •  
  • 20. Yoo JY, Kim Y, Ko YS, J. Ind. Eng. Chem., 19, 1137 (2012)
  •  
  • 21. Tsuji H, Macromol. Biosci., 5, 569 (2005)
  •  
  • 22. Furukawa T, Sato H, Murakami R, Zhang JM, Duan YX, Noda I, Ochiai S, Ozaki Y, Macromolecules, 38(15), 6445 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(5): 600-605

    Published online Sep 25, 2013

  • Received on Mar 19, 2013
  • Accepted on Jun 12, 2013