Article
  • pH Effect on Relaxation Spectra of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers by REM Model
  • Kim NJ
  • REM 모델에 의한 Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체 완화스펙트럼의 pH 영향
  • 김남정
Abstract
The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples was carried out in air, distilled water, pH 3, 7 and 11 solutions at various temperatures using a tensile tester equipped with a solvent chamber. The relaxation spectra of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the equation of relaxation spectrum derived from the Ree-Eyring and Maxwell model. The determination of relaxation spectra was performed from computer calculation using a Laplace transform method. It was observed that the relaxation spectra of these samples are directly related to the distribution of molecular weights and selfdiffusions of flow segments.

Poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하여 여러 온도의 공기 중, 증류수, pH 3, 7, 11 용액에서 실행하였다. Ree-Eyring and Maxwell 모델로부터 얻은 완화 스펙트럼 식에 실험적인 응력완화 곡선을 대입하여 poly(methyl acrylate)-poly(acrylonitrile) 공중합체의 완화스펙트럼을 얻었다. 완화스펙트럼의 계산은 Laplace 변환법을 사용한 컴퓨터 프로그램을 이용하였다. 이들 시료의 완화스펙트럼은 유동단위의 분자량과 자체확산 분포와 밀접한 관계가 있음을 알 수 있었다.

Keywords: poly(methyl acrylate)-poly(acrylonitrile) copolymers; relaxation spectra; REM model; tensile tester; distribution of molecular weights; self-diffusions.

References
  • 1. Winter HH, J. Non-Newton. Fluid Mech., 68(2-3), 225 (1997)
  •  
  • 2. Berzosa AE, Ribelles JLG, Kripotou S, Pissis P, Macromolecules, 37(17), 6472 (2004)
  •  
  • 3. Davies AR, Goulding NJ, J. Non-Newt. Fluid Mech., 189-190, 19 (2012)
  •  
  • 4. Blanc RH, Rheol. Acta., 27, 482 (1988)
  •  
  • 5. Ferry JD, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York (1980)
  •  
  • 6. Baumgaertel M, Winter HH, Rheol. Acta., 28, 511 (1989)
  •  
  • 7. Baumgaertel M, Schausberger A, Winter HH, Rheol. Acta., 29, 400 (1990)
  •  
  • 8. Baumgaertel M, Winter HH, J. Non-Newt. Fluid Mech., 44, 15 (1992)
  •  
  • 9. Fulchiron R, Verney V, Cassagnau P, Michel A, J. Rheol., 37, 17 (1993)
  •  
  • 10. Kamath VM, Mackley MR, J. Non-Newt. Fluid Mech., 32, 119 (1989)
  •  
  • 11. Friedrich C, Waizenegger W, Winter HH, Rheol. Acta, 47(8), 909 (2008)
  •  
  • 12. Elster C, Honercamp J, Weese J, Rheol. Acta., 31, 161 (1992)
  •  
  • 13. Honercamp J, Weese J, Rheol. Acta., 32, 65 (1993)
  •  
  • 14. Honerkamp J, Weese J, Macromolecules., 22, 4372 (1989)
  •  
  • 15. Jensen EA, J. Non-Newton. Fluid Mech., 107(1-3), 1 (2002)
  •  
  • 16. Hansen S, Rheol. Acta, 47(2), 169 (2008)
  •  
  • 17. Orbey N, Dealy MD, J. Rheol., 35, 1035 (1991)
  •  
  • 18. Chakraa EB, Barrioza JC, Mazuyera D, Jarniasb F, Bouffetb A, Tribology International., 43, 1674 (2010)
  •  
  • 19. Baltussen JJM, Northolt MG, Polymer, 45(5), 1717 (2004)
  •  
  • 20. Kim NJ, Kim ER, Hahn SJ, Bull. Korean Chem. Soc., 13, 413 (1992)
  •  
  • 21. Kim NJ, Polym.(Korea), 35(3), 232 (2011)
  •  
  • 22. Friedrich C, Loy RJ, Anderssen RS, Rheol. Acta, 48(2), 151 (2009)
  •  
  • 23. Nobile MR, Cocchini F, Rheol. Acta, 47(5-6), 509 (2008)
  •  
  • 24. Clarke N, Colley FR, Collins SA, Hutchings LR, Thompson RL, Macromolecules, 39(3), 1290 (2006)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2013; 37(2): 135-140

    Published online Mar 25, 2013

  • Received on Jul 26, 2012
  • Accepted on Dec 5, 2012