Article
  • Controlling Pore Size of Electrospun Silk Fibroin Scaffold for Tissue Engineering
  • Cho SY, Park HH, Jin HJ
  • 전기방사를 이용한 조직공학용 실크 피브로인 나노 섬유 지지체의 기공 크기 조절
  • 조세연, 박현호, 진형준
Abstract
Considerable effort has been directed toward the use of silk fibroin as a biotechnological material in biomedical applications on account of its excellent biodegradability, biocompatibility, and unique mechanical properties. For use in tissue engineering, it is very important to design and control the pore architecture of polymeric scaffolds, which provide the vital framework for seeded cells to organize into functioning tissue. In the present study, a silk fibroin scaffold with controlled interconnectivity and pore size was prepared using an electrospinning method with poly(ethylene oxide).

인체의 여러 조직 및 장기를 재생하고자 하는 조직공학에 있어 중요한 요소 중의 하나인 지지체는 세포외기질을 모방한 것으로 손상된 조직을 재생하는데 있어 기본 형틀의 역할을 수행하며, 세포의 분화와 성장 그리고 영양분과 산소의 원활한 공급을 위한 상호 연결된 다공성 구조가 필요하다. 본 연구에서는 실크 피브로인의 조직공학용 지지체로의 응용가능성 향상을 위하여 폴리에틸렌옥사이드를 사용한 보다 넓은 기공과 다공의 연결성을 가지는 실크 피브로인 나노 섬유 지지체를 제조하였다.

Keywords: silk fibroin; tissue engineering; 3D porous scaffolds; pore architecture; electrospinning.

References
  • 1. Shao Z, Vollrath F, Nature., 418, 741 (2002)
  •  
  • 2. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, Lu H, Richmond J, Kaplan DL, Biomaterials., 24, 401 (2003)
  •  
  • 3. Jin HJ, Chen JS, Karageorgiou V, Altman GH, Kaplan DL, Biomaterials., 25, 1039 (2004)
  •  
  • 4. Chen JS, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL, J. Biomed. Mater. Res.Part A., 67, 559 (2003)
  •  
  • 5. Yang S, Leong KF, Du Z, Tissue Eng., 7, 679 (2001)
  •  
  • 6. Zeltinger J, Sherwood JK, Graham DA, Tissue Eng., 7, 557 (2001)
  •  
  • 7. Mikos AG, Temenoff JS, Electron. J. Biotechnol., 3, 1 (2000)
  •  
  • 8. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F, Tissue Eng., 16, 371 (2010)
  •  
  • 9. Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH, Nuber G, Glorieux R, Travers R, Sprague SM, Tissue Eng., 5, 35 (1999)
  •  
  • 10. Jo SM, Lee WS, Chun SW, Fiber Tech. Ind., 6, 112 (2002)
  •  
  • 11. Mo XM, Xu CY, Kotaki M, Ramacrishna S, Biomaterials., 25, 1883 (2004)
  •  
  • 12. Li D, Xia YN, Adv. Mater., 16(14), 1151 (2004)
  •  
  • 13. Ramakrishna S, Fujuhara K, Tae WE, Lim TC, Ma Z, World Scientific., 7, 17 (2005)
  •  
  • 14. Magoshi J, Mizuide M, Magoshi Y, J. Polym. Sci., 17, 515 (1979)
  •  
  • 15. Ishida M, Asakura T, Yoko M, Saito H, Macromolecules., 23, 88 (1990)
  •  
  • 16. Yoon SH, Myung SJ, Kang M, Jin HJ, Poymer Science and Technology., 16, 577 (2005)
  •  
  • 17. Duan B, Dong C, Yuan X, Yao K, J. Biomater. Sci. Polym.Edn., 15, 797 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(5): 651-655

    Published online Sep 25, 2012

  • Received on Mar 27, 2012
  • Accepted on May 15, 2012