Article
  • Study on Solution Polymerization Behaviors by Mixed Aluminium Compound Catalysts
  • Yoo JY, Kim DH, Ko YS
  • 알루미늄 화합물 혼합촉매계의 L-lactide 용액중합 특성 연구
  • 유지연, 김다희, 고영수
Abstract
Solution polymerization behaviors of L-lactide using single and mixed aluminium catalyst systems were studied. Triisobutylaluminium (TIBA) was a reference catalyst for mixing. For the Al(O-i-Pr)3/TIBA catalytic systems, the molecular weight of the resulting polylactide (PLA) decreased as the composition of Al(O-i-Pr)3 increased. The higher molecular weight shoulder was revealed in their GPC curve. At TIBA of 80 mol% a bimodal GPC curve was shown. The conversion in the trimethylaluminium (TMA)/TIBA catalysts system decreased as the composition of TMA in the mixed catalyst increased. The conversion in the trioctylaluminium (TOA)/TIBA catalysts system decreased as the composition of TOA in the mixed catalyst increased. The unimodal molecular weight distribution was observed with the TOA/TIBA catalyst systems. The Al compounds-mixed catalyst could produce a higher molecular weight shoulder in the GPC curve.

본 연구에서는 Al계 화합물 혼합촉매 시스템의 L-lactide 용액중합을 실시하여 단일 Al계 화합물과 Al계 혼합화합물의 용액중합 특성의 차이를 비교하였다. Al(O-i-Pr)3와 triisobutylaluminium(TIBA)를 혼합한 촉매의 경우 생성된 polylactide(PLA)의 분자량은 Al(O-i-Pr)3의 조성이 증가할수록 대체적으로 감소하였다. 분자량 분포곡선은 혼합촉매 시스템의 경우 고분자량 부분에서 shoulder가 형성되었으며 TIBA가 80%인 경우에는 거의 bimodal 형태의 곡선을 가졌다. Trimethylaluminium(TMA)와 TIBA를 혼합한 촉매를 이용한 결과 TMA의 조성비가 증가할수록 전환율은 감소하였다. Trioctylaluminium(TOA)와 TIBA를 혼합한 촉매를 이용하여 생성된 PLA의 전환율은 TOA의 양이 증가함에 따라 점점 감소하였다. 분자량 분포곡선은 TOA 조성비가 40%부터 크게 줄기 시작하여 unimodal 특성을 보였다. 이러한 다양한 조합의 Al계 혼합촉매 시스템을 통해 GPC 곡선에서 PLA의 고분자량 shoulder을 형성할 수 있다.

Keywords: aluminium catalyst; polylactide; L-lactide; mixed catalyst.

References
  • 1. Okada M, Prog. Polym. Sci., 27, 87 (2002)
  •  
  • 2. Kim YH, Kim SH, J. Korean Ind. Eng. Chem., 3(3), 386 (1992)
  •  
  • 3. Chiellini E, Solaro R, Adv. Mater., 8(4), 305 (1996)
  •  
  • 4. Jeong S, Kwak G, Jung IT, Lee DH, Roh HJ, Yoon KB, Polym.(Korea), 32(1), 56 (2008)
  •  
  • 5. Hayashi Y, Yoshioka S, Aso Y, Po ALW, Terao T, Pharm. Res., 11, 337 (1994)
  •  
  • 6. Tsuji H, Echizen Y, Nishimura Y, Polym. Degrad. Stabil., 91, 1128 (2006)
  •  
  • 7. Ikada Y, Tsuji H, Macromol. Rapid Commun., 21(3), 117 (2000)
  •  
  • 8. Tang Z, Gibson VC, Eur. Polym. J., 43, 150 (2007)
  •  
  • 9. Drumright RE, Gruber PR, Henton DE, Adv. Mater., 12(23), 1841 (2000)
  •  
  • 10. Kim WJ, Kim JH, Kim SH, Kim YH, Polym.(Korea), 24(3), 431 (2000)
  •  
  • 11. Lee SH, Kim D, Kim JH, Lee DH, Sim SJ, Nam JD, Kye H, Lee Y, Polym.(Korea), 28(6), 519 (2004)
  •  
  • 12. Aubrecht KB, Hillmyer MA, Tolman WB, Macromolecules, 35(3), 644 (2002)
  •  
  • 13. Albertsson AC, Varma IK, Biomacromolecules, 4(6), 1466 (2003)
  •  
  • 14. Tang ZH, Chen XS, Hang QZ, Bian XC, Yang LX, Piao LH, Jing XB, J. Polym. Sci. A: Polym. Chem., 41(13), 1934 (2003)
  •  
  • 15. Kricheldorf HR, Serra A, Polym. Bull., 14, 497 (1985)
  •  
  • 16. Hyon SH, Jamshidi K, Ikada Y, Polym. Prep., 24, 6 (1983)
  •  
  • 17. Eling B, Gogolewski S, Pennings AJ, Polymer., 23, 1587 (1982)
  •  
  • 18. Vandick JAPP, Smith JAN, Kohn FE, Feijen J, J.Polym. Chem., 21, 197 (1983)
  •  
  • 19. Leenslag JW, Gogolewski S, Pennings AJ, J. Polym. Sci., 29, 2829 (1984)
  •  
  • 20. Jung II, Haam S, Lim G, Ryu JH, Polym.(Korea), 36(1), 1 (2012)
  •  
  • 21. Mehta R, Kumar V, Bhunia H, Upadhyay SN, J.Macromol. Sci. Part C: Polym. Rev., 45, 337 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2012; 36(5): 593-598

    Published online Sep 25, 2012

  • Received on Jan 28, 2012
  • Accepted on Mar 26, 2012