Article
  • Effects of Oxygen Plasma-treated Graphene Oxide on Mechanical Properties of PMMA/Aluminum Hydroxide Composites
  • Kim HC, Jeon S, Kim HI, Choi HS, Hong MH, Choi KS
  • 산소 플라즈마 처리된 그래핀 산화물이 PMMA/수산화알루미늄 컴포지트의 기계적 물성에 미치는 영향
  • 김효철, 전소녀, 김형일, 최호석, 홍민혁, 최기섭
Abstract
The nanocomposites containing graphene oxide (GO) were prepared in order to improve the mechanical properties of poly(methyl methacrylate)/aluminum hydroxide (PMMA/AH) composites. GO was prepared from graphite by oxidation of Hummers method followed by exfoliation with thermal treatment. The surface of GO was modified by oxygen plasma in various exposure times from 0 to 70 min to improve interfacial compatibility. Compared with PMMA/AH composites, the nanocomposites containing GO modified with oxygen plasma for the exposure time up to 50 min showed significant increases in flexural strength, flexural modulus, Rockwell hardness, Barcol hardness, and Izod impact strength. The morphology of fracture surface showed an improved interfacial adhesion between PMMA/AH composites and GO, which was properly treated with oxygen plasma. The mechanical properties of nanocomposites were deteriorated by increasing the content of GO above 0.07 phr due to the nonuniform dispersion of GO.

Poly(methyl methacrylate)/aluminum hydroxide(PMMA/AH) 컴포지트의 기계적 강도를 향상시키기 위해 그래핀 산화물(GO)을 충전제로 사용하여 나노컴포지트를 제조하였다. GO는 흑연을 Hummers법으로 산화한 후 열 처리에 의해 박리시켜 제조하였다. PMMA/AH 컴포지트 매트릭스와의 계면혼화성을 향상시키기 위해 산소 플라즈마를 사용하여 노출 시간을 0분에서 70분까지 변화를 주어가며 GO 표면을 개질시켰다. 노출 시간이 50분까지 증가함에 따라 산소 플라즈마 처리한 GO를 충전제로 사용한 나노컴포지트는 PMMA/AH 컴포지트에 비해 굴곡강도, 굴곡탄성률, Rockwell 경도, Barcol 경도, Izod 충격강도 모두 현저히 증가하였다. 적절한 조건에서 산소 플라즈마 처리된 GO는 PMMA/AH 컴포지트 매트릭스와의 계면접착력이 매우 우수함을 파단면 모폴로지로부터 확인하였다. 하지만 GO의 함량이 0.07 phr 이상으로 증가하면 충전제의 분산이 균일하지 못하여 나노컴포지트의 기계적 강도는 오히려 감소하는 경향을 나타내었다.

Keywords: PMMA; graphene oxide; aluminum hydroxide; oxygen plasma; mechanical properties.

References
  • 1. Geim AK, Novoselov KS, Nat. Mater., 6, 183 (2007)
  •  
  • 2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science., 306, 666 (2004)
  •  
  • 3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Nature., 438, 197 (2005)
  •  
  • 4. Zhang YB, Tan YW, Stormer HL, Kim P, Nature., 438, 201 (2005)
  •  
  • 5. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WA, Science., 312, 1191 (2006)
  •  
  • 6. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK, Proc. Natl. Acad. Sci. USA., 102, 10451 (2005)
  •  
  • 7. Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT, Marchenkov AN, Conrad EH, First PN, de Heer WA, J. Phys. Chem. B, 108(52), 19912 (2004)
  •  
  • 8. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K, Nano Lett., 7, 3499 (2007)
  •  
  • 9. Tan YW, Zhang YB, Stormer HL, Kim P, Eur. Phys. J., 148, 15 (2007)
  •  
  • 10. Greinke RA, Reyolds RA, U. S. Patent 6,416,815 (2002)
  •  
  • 11. Han JH, Cho KW, Lee KH, Kim H, Carbon., 36, 1801 (1998)
  •  
  • 12. Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE, Science., 305, 1447 (2004)
  •  
  • 13. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud'Homme RK, Brinson LC, Nat. Nanotechnol., 3, 327 (2008)
  •  
  • 14. Astumian RD, Schelly ZA, J. Am. Chem. Soc., 106, 304 (1984)
  •  
  • 15. Dwight DW, Riggs WM, J. Colloid Interf. Sci., 47, 650 (1974)
  •  
  • 16. Hegemann D, Brunner H, Oehr C, Nucl. Instrum.Methods Phys. Res. B., 208, 281 (2003)
  •  
  • 17. Chen JR, Wang XY, Tomiji W, J. Appl. Polym. Sci., 72(10), 1327 (1999)
  •  
  • 18. Inagaki N, Narushim K, Tuchida N, Miyazak K, J. Polym. Sci. B: Polym. Phys., 42(20), 3727 (2004)
  •  
  • 19. Okuji S, Sekiya M, Nakabayashi M, Endo H, Sakudo N, Nagai K, Nucl. Instrum. Methods Phys. Res. B., 242, 353 (2006)
  •  
  • 20. Dworecki K, Drabilc M, Hasegawa T, Wasik S, Nucl. Instrum. Methods Phys. Res. B., 225, 483 (2004)
  •  
  • 21. Novak I, Pollak V, Chodak I, Plasma Process Polym., 3, 355 (2006)
  •  
  • 22. Suzer S, Argun A, Vatansever O, Aral O, J. Appl. Polym. Sci., 74(7), 1846 (1999)
  •  
  • 23. Mathieson I, Bradley RH, Int. J. Adhes. Adhes., 16, 29 (1996)
  •  
  • 24. Horn MB, Acrylic Resins, Reinhold Publishing, New York (1960)
  •  
  • 25. Riddle H, Monomeric Acrylic Esters, Reinhold Publishing Co., New York (1954)
  •  
  • 26. Coyard H, Deligny P, Tuck N, Oldring P, Resins for Surface Coatings: Acrylics and Epoxies, 2nd ed., John Wiley & Sons, New York (2001)
  •  
  • 27. Hummers W, Offeman R, J. Am. Chem. Soc., 80, 1339 (1958)
  •  
  • 28. Wang G, Shen X, Yao J, Park J, Carbon., 47, 2049 (2009)
  •  
  • 29. Kim SH, Choi DJ, Lee JS, Choi HS, Polym.(Korea), 33(3), 263 (2009)
  •  
  • 30. Geng Y, Wang SJ, Kim JK, J. Colloid Interface Sci., 336(2), 592 (2009)
  •  
  • 31. Shen JF, Li N, Shi M, Hu YZ, Ye MX, J. Colloid Interface Sci., 348(2), 377 (2010)
  •  
  • 32. Barton SS, J. Colloid Interface Sci., 179(2), 449 (1996)
  •  
  • 33. Bissessur R, Liu PKY, Scully SF, Synth. Met., 156, 1023 (2006)
  •  
  • 34. Nakajima T, Mabuchi A, Hagiwara R, Carbon., 26, 357 (1988)
  •  
  • 35. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
  •  
  • 36. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon., 45, 1558 (2007)
  •  
  • 37. Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez J, Rojas-Cervantes ML, Martin-Aranda RM, Carbon., 33, 1585 (1995)
  •  
  • 38. Zhang X, Bai X, Sun X, Wang X, Wang E, Dai H, Nat. Nanotechnol., 3, 538 (2008)
  •  
  • 39. Chiang T, Seitz F, Ann. Phys., 10, 61 (2001)
  •  
  • 40. Yumitori S, J. Mater. Sci., 35(1), 139 (2000)
  •  
  • 41. Kozlowski C, Sherwood P, J. Chem. Soc. Farad. Trans. 1-Phys. Chem. Condensed Phases., 80, 2099 (1984)
  •  
  • 42. Awad MI, Saleh M, Ohsaka T, J. Solid State Electr., 12, 251 (2008)
  •  
  • 43. Zhang G, Sun S, Yang D, Dodelet JP, Sacher E, Carbon., 46, 196 (2008)
  •  
  • 44. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
  •  
  • 45. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA , Ruoff RS, Carbon., 47, 145 (2009)
  •  
  • 46. Mori T, Tanaka K, Acta Metall., 21, 571 (1973)
  •  
  • 47. Benveniste Y, Mech. Mater., 6, 147 (1987)
  •  
  • 48. Odegard GM, Gates TS, J. Intell. Mater. Syst. Struct., 17, 239 (2006)
  •  
  • 49. Christensen RM, J. Mech. Phys. Solids., 38, 379 (1990)
  •  
  • 50. Tucker C, Liang E, Compos. Sci. Technol., 59, 655 (1999)
  •  
  • 51. Liu H, Brinson L, J. Appl. Mech., 73, 758 (2006)
  •  
  • 52. Luo JJ, Daniel IM, Compos. Sci. Technol., 63, 607 (2003)
  •  
  • 53. Shen L, Li JK, Proc. Roy. Soc. a-Math. Phys. Eng. Sci., 461, 2057 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2011; 35(6): 565-573

    Published online Nov 25, 2011

  • Received on Apr 29, 2011
  • Accepted on Jun 5, 2011