Article
  • Vulcanization Efficiency of Non-polar Rubber Compounds by Microwave
  • Jung U, Lee WK, Lim KT
  • 마이크로파를 이용한 비극성 고무컴파운드의 가황 효율
  • 정우선, 이원기, 임권택
Abstract
The rate of vulcanization of nonpolar ethylene-propylene-diene terpolymer(EPDM)/carbon black compounds was investigated by using hot air and microwave as a heating source. The present study investigated parameters such as heating source, sample thickness, and loading of an additive. The compound thickness was the main factor in the hot air vulcanization. It was due to the poor thermal conductivity of EPDM; that is, the thicker thickness, the lower vulcanization rate. For 100% vulcanization, the compound with 3 mm thickness required 7 min at 250 ℃ in the hot air system. However, the vulcanization of EPDM compounds by microwave system was not affected by the thickness while strongly dependent on the amount of a polar additive, carbon black. A compound with 80 phr of carbon black was perfectly vulcanized within 30 sec. These results suggest that the use of microwave as a heating source is an effective method for the vulcanization of compounds including a polar component.

열원으로 열풍과 마이크로파를 이용하여 비극성 ethylene-propylene-diene terpolymer(EPDM)/카본블랙 컴파운드 제조에 있어서 시편의 두께 및 첨가제 함량에 따른 가황속도의 영향을 비교 조사하였다. 열풍가황의 경우, 컴파운드의 두께가 가장 중요한 인자로서 EPDM의 나쁜 열전도도 특성으로 인하여 컴파운드의 두께가 증가할수록 가황속도는 느려졌으며 두께 3 mm 컴파운드의 완전 가황은 250 ℃에서 7분 이상이 소요되었다. 반면에 마이크로파 가황에서는 컴파운드의 두께에 의한 영향은 없었으나 극성첨가제인 카본블랙 함량에 큰 영향을 받았다. 카본블랙이 80 phr 이상인 컴파운드는 30초간 마이크로파 노출에 의하여 거의 100% 가황이 일어남을 확인하였다. 이러한 결과는 극성물질을 포함하는 컴파운드의 가황열원으로서 마이크로파가 효과적임을 알 수 있었다.

Keywords: EPDM; hot air; microwave; vulcanization; carbon black.

References
  • 1. Anastas PT, Warner JC, Green Chemistry: Theory and Practice, Oxford University Press, New York (1998)
  •  
  • 2. Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC, Catal. Today, 55(1-2), 11 (2000)
  •  
  • 3. Kappe CO, Dallinger D, Murphree SS, Practical Microwave Synthesis for Organic Chemists, Wiley-VCH, Weinheim (2008)
  •  
  • 4. Thostenson ET, Chou TW, Composites: Part A., 30, 1055 (1999)
  •  
  • 5. Lee KT, Yan WM, Int. J. Heat Mass Transf., 41(2), 411 (1998)
  •  
  • 6. Ciesielski A, An Introduction to Rubber Technology, Rapra Tech. Ltd., Shropshire (2000)
  •  
  • 7. Jang DH, Kim JH, Kim YJ, J. Environ. Sci., 19, 365 (2010)
  •  
  • 8. Aaron SB, Inter. J. Adhes. Adhes., 19, 489 (2000)
  •  
  • 9. Flores EM, Spectrochim. Acta B., 62, 1065 (2007)
  •  
  • 10. Lv X, Yang S, Jin J, Zhang L, Li G, Jiang J, Polym.(Korea), 33(5), 420 (2009)
  •  
  • 11. Kim JS, Lee JH, Jung WS, Bae JW, Park HC, Kang DP, Elastomer., 43, 1 (2008)
  •  
  • 12. Brazier DW, Nickel CH, Rubber Chem. Technol., 48, 26 (1975)
  •  
  • 13. Duchacek VJ, J. Appl. Polym. Sci., 19, 1617 (1975)
  •  
  • 14. Mooney M, J. Appl. Phys., 11, 582 (1940)
  •  
  • 15. Gee G, Morrel SH, Rubber Chem. Technol., 25, 254 (1952)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2011; 35(3): 228-231

    Published online May 25, 2011

  • Received on Nov 9, 2010
  • Accepted on Dec 31, 2010