Article
  • Convenient Preparation of Ion-Exchange PVdF Membranes by a Radiation-Induced Graft Polymerization for a Battery Separator
  • Kim SK, Ryu JH, Kwen HD, Chang CH, Cho SH
  • 배터리 분리막을 위한 이온교환형 PVdF 맴브레인의 방사선 그래프트법에 의한 간편한 제조법
  • 김상겸, 류정호, 권해두, 장주환, 최성호
Abstract
A cation-exchange nanofiber poly(vinylidene fluoride) (PVdF) membrane was prepared by a radiation-induced graft polymerization (RIGP) of sodium styrene sulfonate (NaSS) in the presence of the polymerizable access agents in methanol solution. The used polymerizable access agents include styrene, acrylic acid, and vinyl pyrrolidone. The anion-exchange nanofiber PVdF membrane was also prepared by RIGP of glycidyl methacrylate (GMA) and its subsequent chemical modification. The successful preparations of cation- and anion-exchange PVdF membranes were confirmed via SEM, XPS and thermal analysis. The content of the grafting yield, ion-exchange group, and water uptake was in the range of 30.0∼32.3%, 2.81∼3.01 mmol/g and 66.6∼147%, respectively. The proton conductivity at 20 ℃ was in the range of 0.020∼0.053 S/cm. From the result, the prepared ionexchange PVdF membrane can be used as a separator in battery cells.

메탄올 용매에서 고분자 촉진 단량체와 소디윰 스티렌 슐포네이트를 방사선 그래프트 방법으로 양이온 교환 PVdF 맴브레인을 제조하였다. 고분자 촉진 단량체로서 스티렌, 아크릴산, 비닐 피롤리돈을 사용하였다. 또한, 음이온 교환 PVdF 맴브레인도 방사선 그래프트 중합법에 의해 제조하였다. 양이온 및 음이온 교환 PVdF 맴브레인은 SEM, XPS 그리고 열분석기기를 통해 특성평가를 하였고 성공적으로 합성됨을 확인할 수 있었다. 그래프트 수율, 이온교환기의 양 및 침투율은 각각 30.0∼32.3%, 2.81∼3.01 mmol/g 그리고 66.6∼147%로 평가되었으며, 20 ℃에서 이온 전도도를 측정한 결과 0.020∼0.053 S/cm 이었다. 최종적으로, 제조된 양이온 및 음이온교환 PVdF 맴브레인은 전지격막으로서 충분히 사용될 수 있음을 확인할 수 있었다.

Keywords: PVdF nanofiber membrane; sodium styrene sulfonate; polymerizable access agents; glycidyl methacrylate; radiation-induced graft polymerization; ion-exchange; proton conductivity

References
  • 1. Cogliano JU. S. Patent 3,985,580 (1976)
  •  
  • 2. Kaur I, Kumar S, Misra BN, J. Appl. Polym. Sci., 69, 143 (2000)
  •  
  • 3. Tong W, Eur. Pat. Appl., 262846 (1998)
  •  
  • 4. Giovanoni RT, Vaidyanthan HBraz. Pat. 8,804,397 (1989)
  •  
  • 5. Ishigaki I, Sugo T, Senoo K, Okada T, Okamoto J, Machi S, J. Appl. Polym. Sci., 27, 1033 (1982)
  •  
  • 6. Choi SH, Lee KP, Lee JG, Nho YC, J. Appl. Polym. Sci., 77(3), 500 (2000)
  •  
  • 7. Chakravorty B, J. Membr. Sci., 41, 155 (1989)
  •  
  • 8. Choi SH, Kang HJ, Ryu EN, Lee KP, Radiati. Phys. Chem., 60, 495 (2001)
  •  
  • 9. Lee KP, Choi SH, Kang HD, J. Chromatogr. A, 948, 129 (2002)
  •  
  • 10. Choi SH, Nho YC, J. Appl. Polym. Sci., 71(13), 2227 (1999)
  •  
  • 11. Choi SH, Nho YC, Kim GT, J. Appl. Polym. Sci., 71(4), 643 (1999)
  •  
  • 12. Choi SH, Nho YC, J. Appl. Polym. Sci., 71(6), 999 (1999)
  •  
  • 13. Choi SH, Lee KP, Lee JG, Microchem. J., 68, 205 (2001)
  •  
  • 14. Park JH, Bae IA, Choi SH, J. Appl. Polym. Sci., 114(2), 1250 (2009)
  •  
  • 15. Kim KI, Kang HY, Lee JC, Choi SH, Sensors, 9, 6701 (2009)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2010; 34(2): 126-132

    Published online Mar 25, 2010

  • Received on Oct 23, 2009
  • Accepted on Dec 30, 2009