Article
  • Preparation and Characteristics of Crosslinked SEBS/HIPS Cation Exchange Membrane Using Epoxidized Polybutadiene/Divinylbenzene
  • Choi Y, Lee HS, Hwang TS
  • Epoxidized Polybutadiene/Divinylbenzene을 이용한 가교 SEBS/HIPS 양이온교환막의 제조 및 특성
  • 최용재, 이홍석, 황택성
Abstract
The cation-exchange membrane which was sulfonated styrene-ethylene/butylene-styrene (SEBS) block copolymer containing the high impact polystyrene (HIPS) was prepared via post-sulfonation and casting method using the epoxidized polybutadiene and divinylbenzene as crosslinking agents. Post-sulfonation was carried out with sulfuric acid as sulfonating agent and silver sulfate as initiator in the nitrogen atmosphere. The basic properties of membranes, degree of sulfonation (DS), water uptake, ion-exchange capacity (IEC), electrical resistance, and modulus have been examined. DS of membrane increased with increasing the sufonation time. The maximum DS of membrane containing 10 wt% HIPS was 83.6 %. The water uptake and IEC of membranes gradually increased as increasing the DS. The maximum water uptake and IEC of membranes were 43.8 % and 1.14 meq/g, respectively. The lowest electrical resistance of membrane containing the 20 wt% HIPS was 83 Ωㆍcm2. The electrical conductivity of membrane containing 10 wt% HIPS was 1.22×10^(-4) S/cm. The modulus of membrane increased with increasing DS and these values were 153 and 204 kgf/cm2 before and after sulfonation, respectively.

본 연구에서 술폰화 SEBS/HIPS 양이온교환막을 epoxidized polybutadiene과 divinylbenzene 가교제로 가교시켜 캐스팅 및 술폰화방법으로 제조하였다. 막의 술폰화 반응은 황산과 silver sulfate를 사용하여 진행하였다. 또한, 막의 기본물성, 술폰화도, 함수율, 이온교환용량, 전기저항 및 모듈러스를 확인하였다. 막의 술폰화도는 반응시간이 증가함에 따라 증가하였으며, 10 wt% HIPS가 혼합된 막의 술폰화도가 반응시간 120분에서 83.6%로 가장 높게 나타났다. 또한, 막의 함수율과 이온교환용량은 술폰화도가 증가함에 따라 증가하였으며 최대 43.8%, 1.14 meq/g이었다. 막의 전기저항은 20 wt% HIPS가 혼합된 양이온교환막이 83 Ωㆍcm2으로 가장 낮았으며 전기전도도는 10 wt% HIPS 혼합막이 1.22×10^(-4) S/cm로 가장 우수하였다. 또한, 막의 기계적물성, 모듈러스는 술폰화도가 증가할수록 증가하였으며, 술폰화 전후 모듈러스값은 153204 kgf/cm2이었다.

Keywords: SEBS/HIPS; casting; crosslinking; sulfonation; water uptake; ion exchange capacity; electrical resistance

References
  • 1. Yang Y, Holdcroft, Fuel Cells, 2, 171 (2005)
  •  
  • 2. Winston WW, Sirkar KKMembrane Handbook, Van Nostrand Reinhold, New York (1992)
  •  
  • 3. Oh SJ, Moon SH, Davis T, J. Membr. Sci., 169(1), 95 (2000)
  •  
  • 4. Kariduraganavar MY, Nagarale RK, Kittur AA, Kulkarni SS, Desalination, 197(1-3), 225 (2006)
  •  
  • 5. Kalogirou SA, Prog. Energ. Combust. Sci., 31, 242 (2005)
  •  
  • 6. Richard DN, Stern SAMembrane Seperations Technology, Elsevier Science, St. Louis (1995)
  •  
  • 7. Fleming R, Pow E, Fuel Cell Seminar, Tucson, Arizona (1992)
  •  
  • 8. Lain MJ, Moseley PT, Walker AJFuel Cells Programme, Development of Trade & Industry (1992)
  •  
  • 9. Nasef MM, Saidi H, Nor HM, J. Appl. Polym. Sci., 76(2), 220 (2000)
  •  
  • 10. Nasef MM, Saidi H, J. Membr. Sci., 5572, 1 (2003)
  •  
  • 11. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
  •  
  • 12. Choi WH, Jo WH, J. Power Sources, 188, 127 (2009)
  •  
  • 13. Cho IH, Baek K, Lee CS, Nho YC, Yoon SK, Hwang TS, Polym.(Korea), 31(1), 1 (2007)
  •  
  • 14. Jeong BY, Song SH, Baek KW, Cho IH, Hwang TS, Polym.(Korea), 30(6), 486 (2006)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2009; 33(6): 608-614

    Published online Nov 25, 2009

  • Received on Jul 28, 2009
  • Accepted on Sep 8, 2009