Article
  • Study on the Gas Permeation Behaviors of Surface Fluorinated Polysulfone Membranes
  • Kim DH, Im HS, Kim MS, Lee BS, Lee BS, Yoon SW, Kim BS, Park YI, Cheong SI, Rhim JW
  • 표면불소화 폴리설폰 막의 기체 투과거동에 관한 연구
  • 김대훈, 임현수, 김민성, 이병성, 이보성, 윤석원, 김범식, 박유인, 정성일, 임지원
Abstract
The direct fluorination of polymers is a heterogeneous reaction using the mixture of F2 and inert gas. In general, the resulting fluorinated polymers have good barrier property chemical stability similar to those of the fluoro-polymers, and could be prepared from the simple process. In this study, the polysulfone dense films were surface fluorinated using the direct fluorination technique and gas permeability and selectivity of the prepared membranes were measured with varying both F2 concentration and reaction time. The introduction of F2 was confirmed by X-ray photoelectron spectroscopy(XPS), water contact angles, and atomic force microscopy(AFM). As the F2 increased, the permeability decreased while the selectivities for O2, CO2, and He gases relative to N2 increased.

고분자의 직접불소화는 불소분자 기체와 비활성 기체의 비균일 반응으로 이루어진다. 일반적으로 불소화는 단순한 공정으로 이루어지며, 불소화된 고분자들은 우수한 차단 특성과 화학적 안정성이 향상된다. 본 연구에서는 폴리설폰(polysulfone, PSf) 치밀막을 직접 불소화법을 이용하여 막의 표면에 불소를 도입하고자 하였으며, 이때 불소의 농도와 불소화 시간 변화에 따른 기체 투과도와 선택도의 변화를 관찰하였다. 불소화된 막의 물리/화학적 특성을 확인하기 위하여 X-ray photoelectron spectroscopy(XPS), 접촉각, atomic force microscopy(AFM)를 실시하였다. 기체투과도 실험을 통하여 불소농도가 증가함에 따라서 질소, 산소, 이산화탄소, 헬륨의 투과도가 감소하였으며, 질소에 대한 산소, 이산화탄소, 헬륨의 선택도가 향상되었다.

Keywords: gas separation; direct fluorination; polysulfone; surface modification

References
  • 1. Powell CE, Qiao GG, J. Membr. Sci., 279(1-2), 1 (2006)
  •  
  • 2. Freeman BD, Macromolecules, 32(2), 375 (1999)
  •  
  • 3. Mulder MBasic Principles of Membrane Technology, Kluwer Academic Pub., the Netherlands, p36 (1996)
  •  
  • 4. Lee KJ, Jho JY, Kang YS, Won J, Dai Y, Robertson GP, Guiver MD, J. Membr. Sci., 223(1-2), 1 (2003)
  •  
  • 5. Guiver MD, Kutowy O, ApSimon JW, Polymer, 30, 1137 (1989)
  •  
  • 6. Kharitonov AP, J. Flour. Chem., 103, 123 (2000)
  •  
  • 7. Mohr JM, Paul DR, Misna TE, Lagow RJ, J. Membr. Sci., 55, 131 (1991)
  •  
  • 8. Mohr JM, Paul DR, Pinnau I, Koros WJ, J. Membr. Sci., 56, 77 (1991)
  •  
  • 9. Leroux JD, Paul DR, Kampa J, Lagow RJ, J. Membr. Sci., 90(1-2), 21 (1994)
  •  
  • 10. Leroux JD, Teplyakov VV, Paul DR, J. Membr. Sci., 90(1-2), 55 (1994)
  •  
  • 11. Leroux JD, Paul DR, Kampa J, Lagow RJ, J. Membr. Sci., 94(-), 121 (1994)
  •  
  • 12. Langsam M, Anand M, Karwacki EJ, Gas Separ. Purif., 2, 162 (1988)
  •  
  • 13. Mohr JM, Paul DR, Taru Y, Misna T, Lagow RJ, J. Appl. Polym. Sci., 42, 2509 (1991)
  •  
  • 14. Leroux JD, Paul DR, Arendt M, Yuan Y, Cabasso I, J. Membr. Sci., 94(-), 143 (1994)
  •  
  • 15. Kharitonov AP, Moskvin YL, Teplyakov VV, Le Roux JD, J. Flour. Chem., 93, 129 (1999)
  •  
  • 16. Min KJ, Shul YG, Chun MS, Kim HG, Korean J. Chem. Eng., 41, 722 (2003)
  •  
  • 17. Lee KJ, Jho JY, Kang YS, Won J, Dai Y, Robertson GP, Guiver MD, J. Membr. Sci., 223(1-2), 1 (2003)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2009; 33(6): 537-543

    Published online Nov 25, 2009

  • Received on Apr 7, 2009
  • Accepted on Jul 9, 2009