Article
  • Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends
  • Kang KS, Kim BS, Jang WY, Shin BY
  • Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS 블렌드의 형태학, 열적 및 기계적 특성
  • 강경수, 김봉식, 장우열, 신부영
Abstract
The effects of chemically modified thermoplastic starch (CMPS) on the morphology, thermal and mechanical properties of the blends of poly(lactic acid)(PLA) and poly(butylene adipate-co-terephthalate)(PBAT) were studied. Blends of PLA/PBAT with the CMPS contents of 10, 20 and 30 wt% on the basis of PLA/PBAT weight were prepared by a twin screw extruder. The morphology, thermal and mechanical properties of the blends were examined by using scanning electron microscope (SEM), differential scanning calorimeter (DSC) and a tensile tester. The DSC study revealed that PLA/PBAT blends are thermodynamically immiscible, while the compatibility was much improved by addition of the CMPS.

본 연구는 화학적으로 개질된 열가소성 전분(chemically modified thermoplastic starch(CMPS))과 poly (lactic acid)(PLA)와 poly(butylene adipate-co-terephthalate)(PBAT) 블렌드의 형태학, 열적 및 기계적 특성에 미치는 영향에 대해서 연구하였다. PLA/PBAT 블렌드에 CMPS를 이 블렌드의 중량기준으로 10, 20, 30 wt%를 첨가하여 이축압출기로 가공하였다. PLA/PBAT/CMPS 블렌드에서 PLA의 유리전이온도(Tg )는 CMPS 함량이 증가하여도 큰 변화를 나타내지 않았지만, CMPS의 첨가에 의해 PLA상과 PBAT상 사이의 계면상태가 좋아지는 상용성있는 형태학을 보여주었다.

Keywords: poly(lactic acid); chemically modified thermoplastic starch(CMPS); poly(butylene adipateco-terephthalate)(PBAT); morphology; thermal property; mechanical property.

References
  • 1. Carlson D, Dubois P, Nie L, Narayan R, Polym. Eng. Sci., 38(2), 311 (1998)
  •  
  • 2. Narayan R, ACM Symphosium Ser., 939 (2006)
  •  
  • 3. Reeve MS, Mccarthy SP, Downey MJ, Gross RA, Macromolecules, 27(3), 825 (1994)
  •  
  • 4. Stevels WM, Ankone MK, Dijkstra PJ, Feijen J, Macromol. Chem. Phys., 196, 3687 (1995)
  •  
  • 5. Younes H, Cohn D, Eur. Polym. J., 24, 765 (1988)
  •  
  • 6. Gajria AM, Dave V, Gross RA, Mccarthy SP, Polymer, 37(3), 437 (1996)
  •  
  • 7. Zhang LL, Xiong CD, Deng XM, J. Appl. Polym. Sci., 56(1), 103 (1995)
  •  
  • 8. Gajria AM, Dave V, Gross RA, Mccarthy SP, Polymer, 37(3), 437 (1996)
  •  
  • 9. Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ, Polymer, 37(26), 5849 (1996)
  •  
  • 10. Zhang LL, Goh SH, Lee SY, Polymer, 39(20), 4841 (1998)
  •  
  • 11. Kim WS, Kim IH, Kang SC, Mori T, Tsuda Y, Ha KR, Polym.(Korea), 25(4), 521 (2001)
  •  
  • 12. Lee CW, Kim H, Song KH, Moon SI, Polym.(Korea), 26(2), 174 (2002)
  •  
  • 13. Li SM, Rashkov I, Espartero JL, Manolova N, Vert M, Macromolecules, 29(1), 57 (1996)
  •  
  • 14. Du YJ, Lemstra PJ, Nijenhuis AJ, Aert HAM, Bastiaansen C, Macromolecules, 28, 2124 (1993)
  •  
  • 15. Grijpma DW, Vanhofslot RD, Super H, Nijenhuis AJ, Pennings AJ, Polym. Eng. Sci., 34(22), 1674 (1994)
  •  
  • 16. Yoon CS, Ji DS, Fibers and Polymers, 4, 59 (2003)
  •  
  • 17. Shibata M, Inoue Y, Miyoshi M, Polymer, 47(10), 3557 (2006)
  •  
  • 18. Lee S, Lee JW, Korea-Aust. Rheol. J., 17(2), 71 (2005)
  •  
  • 19. Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ, Korea-Aust. Rheol. J., 19(3), 125 (2007)
  •  
  • 20. Narayan R, Blakrishnan S, Nabar Y, Shin BY, Dubois P, Raquez JMU.S. Patent 7,153,354 (2006)
  •  
  • 21. Shin BY, Jo GS, Kang KS, Lee TJ, Kim BS, Lee SI, Song JS, Macromol. Res., 15(4), 291 (2007)
  •  
  • 22. Shin BY, Narayan R, Lee SI, LEE TJ, Polym. Eng. Sci., 48, 2126 (2008)
  •  
  • 23. Raquez JM, Nabar Y, Narayan R, Dubois P, Polym. Eng. Sci., 48, 1747 (2008)
  •  
  • 24. Park JW, Im SS, Polym. Eng. Sci., 40, 2539 (1996)
  •  
  • 25. Wang H, Sun XZ, Seib P, J. Appl. Polym. Sci., 90(13), 3683 (2003)
  •  
  • 26. Nam OH, Ninomiya N, Fujimori A, Masuko T, Polym. Eng. Sci., 51, 39 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2009; 33(2): 164-168

    Published online Mar 25, 2009

  • Received on Oct 27, 2008
  • Accepted on Dec 23, 2008