Article
  • Gas Separation Membranes Prepared from Polystyrene-block-Polybutadiene/Poly(phenylene oxide) Blends for Carbon Dioxide Separation from a Flue Gas
  • Jung YS, Kim CK
  • 배기가스로부터 이산화탄소 분리를 위한 SB 이종 블록공중합체/폴리페닐렌 옥사이드 블렌드 기체분리막
  • 정유선, 김창근
Abstract
To separate carbon dioxide from a flue gas, membranes for gas separation was fabricated from polystyrene-b-polybutadiene (SB) diblock copolymer blends with poly(phenylene oxide), PPO. SB diblock copolymer formed miscible blends with PPO in the experimental range (lower than or equal to 70 wt% PPO). When the blend contained PPO whose composition is in the range of 40-50 wt%, the discontinuous phase of polybutadiene block in SB diblock copolymer, was changed to discrete phase, while polystyrene blocks containing PPO was changed to the continuous phase. A sudden decrease of the gas permeability and a sudden increase of the gas selectivity was observed at these blend compositions. A gas separation membranes having excellent mechanical properties and exhibiting advantages in gas permeability and selectivity could be fabricated from blends containing more than 50 wt% PPO.

배기가스에 포함된 이산화탄소를 분리하기 위해 polystyrene-block-polybutadiene(SB) 이종 블록 공 중합체와 폴리페닐렌 옥사이드(PPO) 블렌드로부터 기체 분리막을 제조하였다. SB/PPO 블렌드에서 폴리스티렌 블록과 PPO는 실험 범위내에서 단상의 블렌드를 형성하였다. SB/PPO 블렌드에서 PPO 함량이 증가하여 40∼50wt% 범위에서 폴리부타디엔 블록은 연속상에서 불연속상으로 폴리스티렌 블록과 PPO로 구성된 상은 불연속상에서 연속상으로 전이가 나타났다. 전이가 관찰되는 블렌드 조성에서 급격한 기체 투과도 감소와 선택도 증가가 관찰되었다. 또 블렌드가 50 wt% 이상의 PPO를 포함할 경우 기계적 강도가 확보되어 실험한 최대 압력인 약 10기압까지 변형없이 우수한 투과도와 선택도를 갖는 기체 분리막 제조가 가능하였다.

Keywords: polystyrene-block-polybutadiene; poly(phenylene oxide); blend; gas separation membrane; carbon dioxide separation

References
  • 1. Herzog H, Environ. Sci. Technol., 35, 148 (2001)
  •  
  • 2. White CM, J. Air Waste Manage. Assoc., 53, 645 (2003)
  •  
  • 3. Davidson O, Metz B, “Special Report on Carbon Dioxide Capture and Storage”, in International Panel on Climate Change, Geneva, Switzerland, 2005
  •  
  • 4. Davison J, Thambimuthu K, “Technologies for Capture of Carbon Dioxide”, in Proceedings of the Seventh Greenouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme, 2004
  •  
  • 5. Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321 (2005)
  •  
  • 6. Favre E, J. Membr. Sci., 294(1-2), 50 (2007)
  •  
  • 7. Kaldis SP, Skodras G, Sakellaropoulos GP, Fuel Process. Technol., 85(5), 337 (2004)
  •  
  • 8. Paul DR, Yampolskii YP, Polymeric gas separation membranes, Paul DR, Yampolskii YP, Editors, CRC Press, Inc., Boca Raton, USA, Chap. 1 and 2 (2000)
  •  
  • 9. Robeson LM, J. Membrane Sci., 62, 165 (1991)
  •  
  • 10. Robeson LM, J. Membrane Sci., 320, 390 (2008)
  •  
  • 11. Koros WJ, Paul DR, J. Polym. Sci. Part B, 14, 675 (1976)
  •  
  • 12. Mulder M, Basic Principles of Membrane Technology, Kluwer Academic Pub., Dordrecht, Netherlands, Chapter 7 (1996)
  •  
  • 13. Kinning D, Winey K, Thomas E, Macromolecules, 21, 3502 (1983)
  •  
  • 14. Cheng P, Berney C, Cohen R, Macromolecules, 21, 3442 (1988)
  •  
  • 15. Hwang JM, Lee KH, Lee DC, Polym.(Korea), 21(5), 745 (1997)
  •  
  • 16. Morel G, Paul DR, J. Membrane Sci., 10, 273 (1982)
  •  
  • 17. Moon Y, Kim CK, Polym.(Korea), 23(5), 690 (1999)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2008; 32(6): 593-597

    Published online Nov 25, 2008

  • Received on Aug 9, 2008
  • Accepted on Sep 16, 2008