Article
  • Blending of Silica Nanoparticles with PBA/PS Core-Shell Baroplastic Polymers
  • Kim MJ, Choi YD, Ryu SW
  • PBA/PS 코어-셸 압력가소성 고분자와 실리카 나노입자의 블렌딩
  • 김민정, 최용두, 류상욱
Abstract
PBA/PS core-shell polymer nanoparticles were synthesized by two stage emulsion polymerization and hybridized with silica nanoparticle by simple mixing in emulsion state and following precipitation into water/methanol mixture dissolving Na2CO3. The stress-strain curve revealed that the elastic modulus was increased with increasing molecular weight of polymer and silica weight fraction but decreased with increasing size of core-shell nanoparticle. Especially, there was a rapid increase of elastic modulus with silica blending. As a result, 6 times higher elastic modulus was observed in PBA/PS core-shell baroplastic sample processed at 25 ℃ under 13.8 MPa for 5 min by blending with 13.0 wt% of silica nanoparticle.

두 단계 에멀젼 중합을 통해 PBA/PS 코어-셸 고분자 나노입자 및 실리카가 함유된 유기-무기 하이브리드 재료를 합성하였다. 실리카 나노입자는 코어-셸 고분자 에멀젼과 혼합되어 Na2CO3가 녹아있는 증류수/메탄올의 혼합용매에 침전되었다. 건조 후 압축성형으로 제조된 시편의 물성평가를 통해 탄성계수는 코어-셸 나노입자의 크기가 작을수록, 분자량이 클수록, 실리카가 많이 첨가될수록 증가함을 확인하였다. 또한 PBA/PS 코어-셸 고분자는 실리카가 13.0 wt% 첨가되었음에도 불구하고 25 ℃, 13.8 MPa, 5분의 조건에서 우수한 압력가소성 특징을 나타내었으며 6배 이상 증가된 탄성계수가 얻어졌다.

Keywords: organic-inorganic hybrid; baroplastic; core-shell; silica nanoparticle; modulus

References
  • 1. Barthet C, Hickey AJ, Cairns DB, Armes SP, Adv. Mater., 11, 408 (2003)
  •  
  • 2. Zhou SX, Wu LM, Sun J, Shen WD, Prog. Org. Coat., 45, 33 (2002)
  •  
  • 3. Percy MJ, Barthet C, Lobb JC, Khan MA, Lascelles SF, Vamvakaki M, Armes SP, Langmuir, 16(17), 6913 (2000)
  •  
  • 4. Bein T, Enzel P, J. Phys. Chem., 93, 6270 (1989)
  •  
  • 5. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE, Polymer, 45(2), 487 (2004)
  •  
  • 6. Smith GD, Bedrov D, Li LW, Byutner O, J. Chem. Phys., 117(20), 9478 (2002)
  •  
  • 7. Brown D, Mele P, Marceau S, Alberola ND, Macromolecules, 36(4), 1395 (2003)
  •  
  • 8. Sugimoto H, Daimatsu K, Nakanishi E, Ogasawara Y, Yasumura T, Inomata K, Polymer, 47(11), 3754 (2006)
  •  
  • 9. Ash BJ, Siegel RW, Schadler LS, Macromolecules, 37(4), 1358 (2004)
  •  
  • 10. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J, Polymer, 42(21), 8759 (2001)
  •  
  • 11. He J, Li H, Wang X, Gao Y, Eur. Polym. J., 42, 1128 (2006)
  •  
  • 12. Yang H, Zhang Q, Guo M, Wang C, Du RN, Fu Q, Polymer, 47(6), 2106 (2006)
  •  
  • 13. Gonzales-Leon JA, Acar MH, Ryu SW, Ruzette AV, Mayes AM, Nature(London), 426, 424 (2003)
  •  
  • 14. Gonzalez-Leon JA, Ryu SW, Hewlett SA, Ibrahim SH, Mayes AM, Macromolecules, 38(19), 8036 (2005)
  •  
  • 15. Pollard M, Russell TP, Ruzette AV, Mayes AM, Gallot Y, Macromolecules, 31(19), 6493 (1998)
  •  
  • 16. Ruzette AVG, Banerjee P, Mayes AM, Russell TP, J. Chem. Phys., 114(18), 8205 (2001)
  •  
  • 17. Ryu DY, Lee DJ, Kim JK, Lavery KA, Russell TP, Han YS, Lee CH, Thiyagarajan P, Phys. Rev. Lett., 90, 235501 (2003)
  •  
  • 18. Ruzette AV, Mayes AM, Pollard M, Russell TP, Hammouda B, Macromolecules, 36, 3551 (2003)
  •  
  • 19. Hsiue GH, Kuo WJ, Huang YP, Jeng RJ, Polymer, 41(8), 2813 (2000)
  •  
  • 20. Wang H, Xu P, Meng S, Zhong W, Du W, Du Q, Polym. Degrad. Stabil., 91, 1455 (2006)
  •  
  • 21. Burns A, Brack HP, Risen Jr. WM, J. Non-Cryst. Solids, 131, 994 (1991)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2008; 32(6): 573-579

    Published online Nov 25, 2008

  • Received on Jul 5, 2008
  • Accepted on Aug 2, 2008