Article
  • The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration
  • So JW, Jang JW, Kim SH, Choi JH, Rhee JM, Min BH, Khang GS
  • 조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구
  • 소정원, 장지욱, 김순희, 최진희, 이종문, 민병현, 강길선
Abstract
Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly(L-lactideco-glycolide)(PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with 180~250 μm pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.

생분해성 고분자인 poly(L-lactide-co-glycolide)(PLGA)를 이용한 조직공학용 다공성 지지체에서의 공극률, 공극의 크기, 공극의 모양 등은 주입된 세포들이 안착하여 증식하는데 있어서 중요한 요건 중 하나이다. 본 연구에서는 섬유륜 세포와 다공크기와의 관계를 파악하고자 다공형성물질인 염화나트륨을 다섯 개의 범위로 분류하여 용매캐스팅/염추출법을 이용한 다양한 다공크기를 갖는 다공성 지지체를 제조하였다. (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide)(MMT) 분석방법을 이용하여 제조된 지지체에 파종된 섬유륜 세포의 생존율과 증식률을 확인하였으며, in vitro 환경에서의 콜라겐 양과 DNA량을 측정하였다. In vivo 환경에의 세포간의 발생하는 여러 상호작용을 확인하기 위하여 면역결핍 쥐의 피하에 섬유륜 세포가 파종된 지지체를 이식하여 sulfated glycosaminoglycan(sGAG)의 합성정도와 조직학적인 평가를 수행하였다. 결론적으로 180~250 μm 다공크기를 갖는 지지체에서 높은 세포 생존율과 체내에서의 원할한 세포외기질의 형성을 보임으로써 여타의 지지체보다 섬유륜 조직 재생에 적절할 것으로 사료된다.

Keywords: tissue engineering; annulus fibrosus cell; PLGA; scaffold; pore size

References
  • 1. Helen W, Julie EG, Biomaterials, 27, 5220 (2006)
  •  
  • 2. Nishida K, Kang JD, Gilbertson LG, Moon SH, Suh JK, Vogt MT, Robbins PD, Evans CH, Spine, 24, 2419 (1999)
  •  
  • 3. Cassinelli EH, Hall RA, Kang JD, Spine J., 1, 205 (2001)
  •  
  • 4. Gruber HE, Leslie K, Ingram J, Norton HJ, Hanley EN, Spine J., 4, 44 (2004)
  •  
  • 5. Alini M, Markovic P, Aebi M, Spiro RC, Roughley PJ, Spine, 28, 446 (2003)
  •  
  • 6. Seguin CA, Grynpas MD, Pilliar RM, Waldman SD, Kandel RA, Spine, 29, 1299 (2004)
  •  
  • 7. Ha HJ, Kim SH, Yoon SJ, Park SW, So JW, Rhee JM, Kim MS, Khang G, Lee HB, Polym.(Korea), 32(1), 26 (2008)
  •  
  • 8. Ko YK, Kim SH, Ha HJ, Kim MS, Han CW, Rhee JM, Son YS, Lee HB, Khang G, Tissue Eng. Regen. Med., 4, 67 (2007)
  •  
  • 9. Khang G, Lee SJ, Kim MS, Lee HB, Biomaterials: Tissue-Engineering, in “Webster's Biomedical Engineering Handbook”, S. Webster, Editor, John & Wiley press, NY, pp 366-383 (2006)
  •  
  • 10. Kim SK, Kim SH, Lee HR, Cho MH, Kim MS, Khang G, Lee HB, Tissue Eng. Regen. Med., 2, 388 (2005)
  •  
  • 11. Kim SH, Ko YK, Ha HJ, Yoon SJ, Yang YS, Kim MS, Khang G, Lee IW, Rhee JM, Lee HB, Tissue Eng. Regen. Med., 4, 331 (2007)
  •  
  • 12. Honda M, Yada T, Ueda M, Kimata K, J. Oral Maxillofac. Surg., 58, 767 (2000)
  •  
  • 13. Jang JW, Park KS, Kim SH, Park CS, Kim MS, Han CW, Rhee JM, Khang G, Lee HB, Tissue Eng. Regen. Med., 2, 34 (2005)
  •  
  • 14. So JW, Kim SH, Baek MO, Lim JY, Min BH, Kim MS, Lee HB, Khang G, Tissue Eng. Regen. Med., 4, 577 (2007)
  •  
  • 15. Cho JC, Khang G, Choi HS, Rhee JM, Lee HB, Polym.(Korea), 24(5), 728 (2000)
  •  
  • 16. Jeon EK, Whang HJ, Khang G, Lee I, Rhee JM, Lee HB, Polym.(Korea), 25(6), 893 (2001)
  •  
  • 17. Kim SK, Hong KD, Jang JW, Lee SJ, Kim MS, Han CW, Khang G, Lee I, Lee HB, Tissue Eng. Regen. Med., 1, 149 (2004)
  •  
  • 18. khang G, Jeon JH, Cho JC, Lee HB, Polymer(Korea), 23, 3 (1999)
  •  
  • 19. Ma PX, Choi JW, Tissue Eng., 7, 23 (2001)
  •  
  • 20. Khang G, Kim SK, Hong KD, Sang WY, Han CW, Lee I, Lee HB, Tissue Eng. Regen. Med., 1, 136 (2004)
  •  
  • 21. Hu Y, Grainger DW, Winn SR, Hollinger JO, J. Biomed. Mater. Res., 59, 563 (2002)
  •  
  • 22. Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY, J. Biomed. Mater. Res., 59, 676 (2002)
  •  
  • 23. Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, Uyama S, Vacanti JP, Langer R, Mikos AG, Biomaterials, 21, 1837 (2000)
  •  
  • 24. Ha HJ, Kim SH, Yoon SJ, Ko YK, Lee EK, Son YS, Kim MS, Rhee JM, Khang G, Lee HB, Tissue Eng. Regen. Med., 3, 416 (2006)
  •  
  • 25. Baek MO, Kim SH, So JW, Roh HW, Lee NR, Kim MS, Ryu GH, Cho YH, Lee SJ, Khang G, Lee HB, Tissue Eng. Regen. Med., 4, 571 (2007)
  •  
  • 26. Park TG, Yoon JJ, Polym. Sci. Technol., 10(6), 722 (1999)
  •  
  • 27. Kim SH, Kim SH, Kim YH, Polymer Sci. Tech., 16, 468 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2008; 32(6): 516-522

    Published online Nov 25, 2008

  • Received on Mar 29, 2008
  • Accepted on May 7, 2008