Article
  • Thermal and Rheological Properties, and Biodegradability of Chemically Modified PLA by Reactive Extrusion
  • Jang WY, Hong KH, Cho BH, Jang SH, Lee SI, Kim BS, Shin BY
  • 반응압출법에 의해 화학적으로 개질된 PLA의 열적 특성, 유변학적 성질 및 생분해도
  • 장우열, 홍기헌, 조백희, 장상희, 이상일, 김봉식, 신부영
Abstract
A commercialized biobased and biodegradable poly(lactic acid)(PLA) containing the functional monomer of glycidyl methacrylate (GMA) was chemically modified using reactive extrusion to enhance its melt strength. Modified PLAs were prepared with various contents of GMA and initiator, and were characterized by observing their gel fraction, thermal properties, melt viscoelasticity and biodegradability. The complex viscosity and storage modulus of chemically modified PLA with the initiator alone was increased by addition of initiator and were more increased in the presence of GMA. There was a optimum content of GMA showing the maximum complex viscosity with the amount of initiator. The biodegradebility of modified PLA was slightly decreased by addition of GMA.

본 연구는 식물유래 생분해성 고분자인 poly(lactic acid)(PLA)의 가공성을 향상시키기 위하여 기능성 단량체인 glycidyl methacrylate(GMA)와 반응 개시제를 첨가하여 반응압출법으로 PLA를 개질한 후 겔화도, 열적성질, 유변학적 특성 및 생분해도를 조사하였다. 개질 PLA 및 순수 PLA의 열적특성은 시차열량분석기(DSC)를 이용하여 측정하였고 유변학적 특성은 복합점도(η*), 저장 탄성률(G′ ), log G′ vs. log G″ 선도를 이용하여 분석 비교하였다. GMA가 포함되지 않고 개시제로만 개질된 PLA의 복합점도 및 저장탄성률도 순수 PLA보다 증가하였지만, 여기에 GMA를 첨가하여 개질하면 더욱 향상된 복합점도와 저장탄성률을 갖는 개질 PLA를 얻을 수 있었다. 개시제의 함량에 따라 최고 높은 복합점도 및 저장탄성률 증가 효과를 보이는 최적의 GMA 함량이 존재하였다. 그리고 GMA가 함유된 개질 PLA의 생분해도는 약간 낮아지는 경향을 보였다.

Keywords: poly(lactic acid); functional monomer; reactive extrusion; thermal and rheological properties; biodegradability

References
  • 1. Narayan Rin Biobased & Biodegradable Polymer Materials, K. C. Khemmani and C. Scholz, Editors, ACS, Washington DC (2006)
  •  
  • 2. David SB, Geyer JD, Gustafson A, Snook J, Narayan Rin Biodegradable Plastics and Polymers, Y. Doi and K. Fukuda, Editors, Elsevier, Osaka, p. 601 (1993)
  •  
  • 3. Lee JR, Chun SW, Kang HJ, Polym.(Korea), 27(4), 285 (2003)
  •  
  • 4. Carlson D, Dubois P, Nie L, Narayan R, Polym. Eng. Sci., 38(2), 311 (1998)
  •  
  • 5. Ray SS, Okamoto M, Macromol. Rapid Commun., 24(14), 815 (2003)
  •  
  • 6. Di YW, Iannace S, Di Maio E, Nicolais L, J. Polym. Sci. B: Polym. Phys., 43(6), 689 (2005)
  •  
  • 7. Di Y, Iannace S, Maio ED, Nicolai L, Macromol. Mater. Eng., 290, 1083 (2005)
  •  
  • 8. Kim ES, Kim BC, Kim SH, J. Polym. Sci. B: Polym. Phys., 42(6), 939 (2004)
  •  
  • 9. Gupta MC, Deshmukh VG, Polymer, 24, 827 (1983)
  •  
  • 10. Shin BY, Kang KS, Jo GS, Han DH, Song JS, Lee SI, Lee TJ, Kim BS, Polym.(Korea), 31(3), 269 (2007)
  •  
  • 11. Lee Y, Kim J, Nam J, Park C, Jang S, Polym.(Korea), 24(3), 366 (2000)
  •  
  • 12. Lee Y, Kim J, Lee M, Nam J, Park YH, Park C, Polym.(Korea), 26(1), 139 (2002)
  •  
  • 13. Jeon BH, Yoon H, Hwang SS, Kim J, Hong SM, Polym.(Korea), 29(2), 127 (2005)
  •  
  • 14. Cho IH, Kwak NS, Kang PH, Nho YC, Hwang TS, Polym.(Korea), 30(3), 217 (2006)
  •  
  • 15. Hwang K, Ahn W, Suh S, Ha K, Polym.(Korea), 31(1), 68 (2007)
  •  
  • 16. Song KH, Hong JH, Sung YT, Kim YH, Han MS, Yoon HG, Kim WN, Polym.(Korea), 31(4), 283 (2007)
  •  
  • 17. Hogt AH, Meijer J, Jelenic Jin Reactive Modifiers for Polymers, S. Al-Malaik Editor, Blackie Academic and Professional, Chapman and Hall, London, p. 84 (1996)
  •  
  • 18. Meister JJ, Polymer Modification: Principles, Techniques, and ApplicationsMarcell Dekker, Inc., New York (2000)
  •  
  • 19. Kim DJ, Kang HJ, Seo KH, J. Appl. Polym. Sci., 81(3), 637 (2001)
  •  
  • 20. Kim KJ, Ha HS, Kim SJ, Lee JC, Kim BK, Polym.(Korea), 17(1), 1 (1993)
  •  
  • 21. Sodergard A, Niemi M, Selin JF, Nasman JH, Ind. Eng. Chem. Res., 34(4), 1203 (1995)
  •  
  • 22. Auras R, Harte B, Selke S, Macromol. Biosci., 4, 835 (2004)
  •  
  • 23. Jeong BJ, Xantos M, Polym. Eng. Sci., 47(3), 244 (2007)
  •  
  • 24. Chae HG, Kim BC, Im SS, Han YK, Polym. Eng. Sci., 41(7), 1133 (2001)
  •  
  • 25. Yilmazer U, Xanthos M, Bayram G, Tan V, J. Appl. Polym. Sci., 75(11), 1371 (2000)
  •  
  • 26. Yang HH, Han CD, Kim JK, Polymer, 35(7), 1503 (1994)
  •  
  • 27. Han CD, John MS, J. Appl. Polym. Sci., 32, 3809 (1986)
  •  
  • 28. Alata H, Hexig B, Inoue Y, J. Polym. Sci. B: Polym. Phys., 44(13), 1813 (2006)
  •  
  • 29. Jiao C, Wang Z, Liang X, Hu Y, Polym. Test, 24, 71 (2005)
  •  
  • 30. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E, J. Appl. Polym. Sci., 103(1), 198 (2007)
  •  
  • 31. Piccarolo S, Vassileva E, Kiflie Zin Polymer Crystallization, J.-U. Sommer and G. Reiter, Editors, Springer, New York, p. 325 (2003)
  •  
  • 32. Dotson DL, Burkhart BMU.S.Patent 7,144,939 (2006)
  •  
  • 33. Gui QD, Xin Z, Zhu WP, Dai G, J. Appl. Polym. Sci., 88(2), 297 (2003)
  •  
  • 34. Park JW, Im SS, Kim SH, Kim YH, Polym. Eng. Sci., 40(12), 2539 (2000)
  •  
  • 35. Wei X, Collier JR, Petrovan S, J. Appl. Polym. Sci., 105(2), 309 (2007)
  •  
  • 36. Huang RTThe Practical Handbook of Compost Engineering, Lewis Publishers, Florida (1993)
  •  
  • 37. Snook JBBiodegradability of Polylactide Film in Simulated Composting Environments, M. S. Thesis, Michigan State University, Michigan (1994)
  •  
  • 38. Yoshi F, Darwis D, Mitimo H, Makuuchi K, Radiat. Phys. Chem., 57, 417 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2008; 32(2): 116-124

    Published online Mar 25, 2008

  • Received on Oct 25, 2007
  • Accepted on Jan 15, 2008