Communication
  • Effects of Irradiation of Electron Beam on the Rheological Properties of Poly(lactic acid) and Chemically Modified Poly(lactic acid)
  • Shin BY, Kang KS, Jo GS, Han DH, Song JS, Lee SI, Lee TJ, Kim BS
  • 전자선 조사가 Poly(lactic acid) 및 개질된 Poly(lactic acid)의 유변학적 특성에 미치는 영향
  • 신부영, 강경수, 조규순, 한도흥, 송정섭, 이상일, 이태진, 김봉식
Abstract
In this study, we investigated the effects of electron beam irradiation on the rheological properties of PLA for enhancing processability. The electron beam was irradiated onto the pure PLA, chemically modified PLA by reactive extrusion, and PLA containing functional monomer. The complex viscosity and log G vs. log G plot among dynamic rheological properties were chosen for comparison. The complex viscosity of irradiated pure and chemically modified PLA decreased significantly due to degradation of PLA molecules with increasing the E-beam dosages. Complex viscosity of irradiated PLA with functional monomer showed maximum value at moderate dosage, while at high dosage the complex viscosity was decreased by a prolonged irradiation.

본 연구는 생분해성 고분자인 폴리락틱에시드(poly(lactic acid; PLA)의 가공성을 향상시키는 연구의 일환으로 순수 PLA, 반응압출법에 의한 화학적으로 개질된 PLA 및 기능성 단량체를 함유한 PLA에 전자선을 조사하여 PLA를 개질한 후 유변학적 특성을 조사하였다. 유변학적 특성은 복합점도와 log G vs. log G 선도를 이용하여 해석 분석 비교하였다. 그 결과 전자선 조사로 개질된 순수 PLA 및 화학적으로 개질된 PLA의 복합점도는 전자선 조사량에 따라 감소하는 경향을 보였지만, 기능성 단량체가 첨가된 PLA는 전자선 조사에 의해 복합점도가 증가하다가 감소하는 경향을 보였다.

Keywords: poly(lactic acid); electron beam irradiation; reactive extrusion; functional monomer; complex viscosity; Cole-Cole plot

References
  • 1. Narayan RBiobased & Biodegradable Polymer Materials: Rationale, Drivers, and Thechnology Examples, ACS Symphosium Ser. 939, Oxford University Press, London, Chapt.5 (2006)
  •  
  • 2. Lee JR, Chun SW, Kang HJ, Polym.(Korea), 27(4), 285 (2003)
  •  
  • 3. Carlson D, Dubois P, Nie L, Narayan R, Polym. Eng. Sci., 38(2), 311 (1998)
  •  
  • 4. Hogt AH, Meijer J, Jelenic JModification of Polypropylene by Organic Peroxide, in Reactive Modifiers for Polymers, S. Al-Malaik, Editor, Blackie Academic and Professional, Chapman and Hall, London, p. 84 (1996)
  •  
  • 5. Meister JJPolymer Modification: Principles, Techniques, and Applications, Marcell Dekker, Inc., New York (2000)
  •  
  • 6. Kim DJ, Kang HJ, Seo KH, J. Appl. Polym. Sci., 81(3), 637 (2001)
  •  
  • 7. Kim DJ, Kim WS, Lee DH, Min KE, Park LS, Kang IK, Jeon IR, Seo KH, J. Appl. Polym. Sci., 81(5), 1115 (2001)
  •  
  • 8. Sodergard A, Niemi M, Selin JF, Nasman JH, Ind. Eng. Chem. Res., 34(4), 1203 (1995)
  •  
  • 9. Di Y, Iannace S, Maio ED, Nicolais L, Macromol. Mater. Eng., 290, 1083 (2005)
  •  
  • 10. Sugimoto M, Tanaka T, Masubuchi Y, Takimoto J, Koyama K, J. Appl. Polym. Sci., 73(8), 1493 (1999)
  •  
  • 11. Han DH, Jang JH, Kim HY, Kim BN, Shin BY, Polym. Eng. Sci., 46(4), 431 (2006)
  •  
  • 12. Han DH, Shin SH, Petrov S, Radiat. Phys. Chem., 69, 239 (2004)
  •  
  • 13. Darwis D, Nishimura K, Mitomo H, Yoshii F, J. Appl. Polym. Sci., 74(7), 1815 (1999)
  •  
  • 14. Yoshii F, Darwis D, Mitimo H, Makuuchi K, Radiat. Phys. Chem., 57, 417 (2000)
  •  
  • 15. Yoshii F, Suhartini M, Nagasawa N, Mitomo H, Kime T, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 208, 370 (2003)
  •  
  • 16. Gupta MC, Deshmukh VG, Polymer, 24, 827 (1983)
  •  
  • 17. Han CD, John MS, J. Appl. Polym. Sci., 32, 3809 (1986)
  •  
  • 18. Kim ES, Kim BC, Kim SH, J. Polym. Sci. B: Polym. Phys., 42(6), 939 (2004)
  •  
  • 19. Chae DW, Lee KH, Kim YC, J. Polym. Sci. B: Polym. Phys., 44(2), 371 (2006)
  •  
  • 20. Wang Y, Goethals EJ, Du Prez PE, Macromol. Chem. Phys., 205, 1774 (2004)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2007; 31(3): 269-272

    Published online May 25, 2007

  • Received on Jan 26, 2007
  • Accepted on Mar 22, 2007