Article
  • Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment
  • JiC YY, Kim SS
  • Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상
  • 지영연, 김상식
Abstract
It has been reported that plasma treatments are used to modify surface properties of polymers such as adhesivity, hydrophobicity and hydrophilicity. Using plasma treatment, interfacial property can be introduced to a polymer surface without affecting the desired bulk properties of a material. In this study, commercial polyamide66 (PA66)/polyphenylene (PPE) polymer was modified by plasma treatment under a various gas specious for elimination of organic compound and polymer surface property with hydrophilicity. PA66/PPE polymer with hydrophilicity was treated by RF plasma vacuum system under a various parameter such as gas specious, processing time and partial pressure. Hydrophilicity of PA66/PPE was confirmed by calculation of the surface free energy from contact angle measurement. The highest surface free energy of 50.03 mJ/m2 with the lowest contact angle of 14 was obtained at plasma process power of 100 W, treatment time of 2 min and Ar/O2 gases of 100 and 200 sccm. Moreover the change of organic compounds on the polymer surface was analyzed by fourier transforms infrared spectrometry (FTIR).

플라스마 표면처리는 접착력, 친수성, 소수성 등과 같은 고분자의 표면 특성을 개질시키기 위하여 사용되고 있다. 플라스마를 이용하여 표면을 처리하게 되면 고분자의 전체적인 물성은 유지한 채 표면의 특성만을 변화시키는 장점을 가지고 있다. 본 연구에서는 다양한 가스를 사용한 플라스마를 이용하여 상업용 polyamide66(PA66) /polyphenylene(PPE) 고분자의 표면의 접착력 향상을 위해 표면 유기물 제거와 친수성으로 개질을 시도하였다. 플라스마 처리 공정 변수인 공정 파워, 처리 시간, 가스 종 들을 변화시키면서 표면을 개질하였으며 PA66/ PPE 고분자의 친수성 개질을 확인하기 위하여 접촉각 및 표면 자유에너지 변화를 측정하였다. 또한 유기물 제거를 FTIR 분석을 통하여 확인하였다. 플라스마를 이용한 표면처리 결과, 공정 파워 100 W, 처리 시간 2분, 아르곤/산소 공정가스에서 가장 낮은 접촉각(73도에서 14도)과 가장 높은 표면 자유에너지(44.20 mJ/m2에서 50.0 3 mJ/m2)를 나타내었다.

Keywords: low pressure plasma; PA66/PPE blends; surface free energy; coating; hydrophilicity

References
  • 1. Leidheiser H, Szeles C, Ve´rtes A, Nucl. Instrum. Meth., A255, 606 (1987)
  •  
  • 2. Mandani M, Miron RR, Granata RD, J. Coat. Technol., 69, 45 (1997)
  •  
  • 3. Wang YQ, Mohite SS, Bridwell LB, J. Master. Res., 8, 388 (1993)
  •  
  • 4. Lee Y, Lee EH, Mansur LK, Surf. Coat. Technol., 51, 262 (1992)
  •  
  • 5. Tsuji H, Satoh H, Ikeda S, Ikemoto N, Gotoh Y, Ishikawa J, Surf. Coat. Technol., 103, 124 (1998)
  •  
  • 6. Abes M, Ersen O, Muller D, Acosta M, Ulhaq-Bouillet C, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 23, 229 (2003)
  •  
  • 7. Wang S, Harrell JW, J. Magn. Magn. Mater., 242, 437 (2002)
  •  
  • 8. Albrecht M, Anders S, Thomson T, Rettner CT, Bestetti ME, J. Appl. Phys., 91, 6845 (2002)
  •  
  • 9. Liakopoulos TM, Zhang W, Ahn CH, IEEE Trans. Magn., 32, 5154 (1996)
  •  
  • 10. Cho HJ, Ahn CH, IEEE Trans. Magn., 36, 686 (2000)
  •  
  • 11. Vakula VL, Pritykin LMPolymer Adhesion : Physico-chemical Principles, Ellis Horwood Ltd, New York (1991)
  •  
  • 12. Cho DL, Polym. Sci. Technol., 6(5), 499 (1995)
  •  
  • 13. Tatoulian M, Arefi-Khonsari F, Shahid-zadeh-Ahmadi N, Amouroux J, Int. J. Adhes. Adhes., 15, 177 (1995)
  •  
  • 14. Adamson AWPhysical chemistry of surfaces, 5th ed., Wiley, New York, Chapter 10 (1990)
  •  
  • 15. Van Oss CJInterfacial Forces in Aqueous Media, Dekker, New York, p. 7 (1994)
  •  
  • 16. Van Oss CJ, Chaudhury MK, Good RJ, Adv. Colloid Interface Sci., 28, 35 (1987)
  •  
  • 17. Nguyen LT, Hasirci N, J. Mater. Sci.: Polym. Lett. Ed., 18, 541 (1980)
  •  
  • 18. Oiseth SK, Korzer A, Kasemo B, Lausmaa J, Appl. Surf. Sci., 202, 92 (2000)
  •  
  • 19. Hwang SN, Jeon BJ, Jung IH, J. Korean Ind. Eng. Chem., 9(3), 383 (1998)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2006; 30(5): 391-396

    Published online Sep 25, 2006

  • Received on Mar 29, 2006
  • Accepted on Sep 11, 2006