Article
  • Thermal, Frictional and Wear Behavior of Carbon Nanofiber/Poly(methyl methacrylate) Composites
  • Park SJ, Im SH, Lee JR, Rhee JM
  • 탄소나노섬유/폴리(메틸 메타크릴레이트) 복합재료의 열적 및 마찰·마모 거동 연구
  • 박수진, 임세혁, 이재락, 이종문
Abstract
In this work, the effect of carbon nanofiber(CNF) on thermal properties, and friction and wear behavior of CNF/PMMA composites were examined. While thermal properties of the composites were investigated with differential scanning calorimetry, thermogravimetric analyzer, and dynamic mechanical analyzer, friction and wear behaviors were examined using a friction and wear tester. The glass transition temperature(Tg), integral procedural decomposition temperature(IPDT), storage modulus(E'), and tan δ appeared at higher temperatures with increasing CNF content, which were probably attributed to the presence of strong interactions between the carbonaceous fillers and the PMMA resins matrix. The wear loss in the composites decreased at 0.1 wt% CNF and then increased with 5∼10 wt% CNF content. This was due to the existence of large aspect ratio CNF in PMMA, which led to an alignment of PMMA chains and an increase of mechanical interlocking, resulting in the formation of crosslinked structures between CNF and PMMA in the composite.

본 연구는 폴리(메틸 메타크릴레이트)(PMMA)에 탄소나노섬유(CNF)의 함량을 달리하여 만든 CNF/ PMMA 나노복합재료의 열적 및 마찰ㆍ마모 거동에 관하여 고찰하였다. CNF/PMMA의 열적특성은 시차주사열량계(DSC)와 열중량 분석기(TGA), 그리고 동적기계분석기(DMA)를 이용하여 고찰하였으며, 마찰ㆍ마모 거동은 마찰·마모 시험기(wear tester)를 이용하여 측정하였다. 결과로서, CNF/PMMA 복합재료의 Tg와 integral procedural decomposition temperature(IPDT), storage modulus(E ), 그리고 tan δ의 값은 CNF의 함량이 증가함에 따라 증가하였으며, 마찰계수와 마모량은 CNF 함량 0.1 wt%에서는 감소하였다가 CNF 함량 5∼10 wt%에는 점차적으로 증가하는 경향을 나타냈다. 이는 PMMA에 세장비(aspect ratio)가 큰 CNF가 강화제로 첨가됨에 따라 고분자 사슬의 정렬이 일어나며 또한 수지 내에서 기계적 얽힘(mechanical interlocking) 현상이 증가하여 전체적으로 가교화된 구조를 형성하였기 때문이라 판단된다.

Keywords: carbon nanofiber; poly(methyl methacrylate); thermal properties; friction and wear behaviors

References
  • 1. Donnet JB, Bansal RCCarbon Fibers, 2nd ed, Marcel Dekker, New York (1990)
  •  
  • 2. Paul DR, Newman SPolymer Blends, Academic Press, New York (1978)
  •  
  • 3. Mallick PKFiber-reinforced Composites, Marcel Dekker, New York (1988)
  •  
  • 4. Lee DR, Kim HY, MA TM, Park SY, Seo MK, J. Korean Fiber Soc., 40, 2 (2003)
  •  
  • 5. Patton RD, Pittman CU, Wang L, Hill JR, Composites A, 30, 1081 (1999)
  •  
  • 6. Jin Z, Pramoda KP, Xu G, Goh SH, Chem. Phys. Lett., 337, 43 (2001)
  •  
  • 7. Park SJ, Cho KS, Choi CG, J. Colloid Interface Sci., 258(2), 424 (2003)
  •  
  • 8. Galante MJ, Oyanguren PA, Andromaque K, Frontini PM, Williams RJJ, Polym. Int., 48, 642 (1999)
  •  
  • 9. Chang TC, Liao CL, Wu KH, Chen HB, Yang JC, Polym. Degrad. Stabil., 66, 127 (1999)
  •  
  • 10. Oberlin A, Endo M, J. Cryst. Growth, 32, 335 (1976)
  •  
  • 11. Carneiro OS, Covas JA, Bernardo CA, Caldiera G, van Hattum FWJ, Ting JM, Alig RL, Lake ML, Compos. Sci. Technol., 58, 401 (1998)
  •  
  • 12. Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162 (2001)
  •  
  • 13. Wu X, Wang Z, Chen L, Huang X, Carbon, 42, 1965 (2004)
  •  
  • 14. Muhl T, Kretz J, Monch I, Schneider CM, Bruckl H, Reiss G, Appl. Phys. Lett., 76, 786 (2000)
  •  
  • 15. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS, Carbon, 39, 1287 (2001)
  •  
  • 16. Master GMW, Chem. Phys., 85, 81 (2004)
  •  
  • 17. Seo MK, Park SJ, Lee SK, J. Colloid Interface Sci., 285(1), 306 (2005)
  •  
  • 18. Lozano K, Barrera EV, J. Appl. Polym. Sci., 80, 125 (2001)
  •  
  • 19. Chung DDL, Carbon, 39, 279 (2001)
  •  
  • 20. Shui XP, Chung DDL, J. Mater. Sci., 35(7), 1773 (2000)
  •  
  • 21. Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S, Composites B, 35, 245 (2004)
  •  
  • 22. Lau KL, Hui D, Composites B, 33, 263 (2002)
  •  
  • 23. Gauthier C, Chazeau L, Prasse T, Cavaille JY, Compos. Sci. Technol., 65, 335 (2005)
  •  
  • 24. Brandl W, Marginean G, Chirila V, Warchewski W, Carbon, 42, 5 (2004)
  •  
  • 25. Xu J, Donohoe JP, Pittman CU, Composites A, 35, 693 (2004)
  •  
  • 26. Tibbetts GG, NATO Sci. Ser., Ser. E: Appl. Sci., 372, 1 (2001)
  •  
  • 27. Park SJ, Lee EJ, Lee JR, Polym.(Korea), 29(5), 481 (2005)
  •  
  • 28. Friedrich KFriction and Wear of Polymer Composites, Elsevier, New York (1986)
  •  
  • 29. Sin HC, Saka N, Suh NP, Wear, 55, 163 (1979)
  •  
  • 30. Gmble LFriction and Lubrication in Mechanical Engineering, Krayn, Berlin (1925)
  •  
  • 31. Hintermann HE, Wear, 100, 381 (1984)
  •  
  • 32. Lancaster JK, J. Phys. D-Appl. Phys., 1, 549 (1968)
  •  
  • 33. Park SJ, Jun BR, J. Colloid Interface Sci., 284(1), 204 (2005)
  •  
  • 34. Park SJ, Jun BR, Suh DH, J. Korean Ind. Eng. Chem., 13(2), 119 (2002)
  •  
  • 35. Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963)
  •  
  • 36. Park SJ, Seo MK, Lee JR, Carbon, 40, 835 (2002)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2006; 30(5): 385-390

    Published online Sep 25, 2006

  • Received on Mar 27, 2006
  • Accepted on Sep 19, 2006