Invited Article
  • Anodic Oxidation Lithography via Atomic Force Microscope on Organic Resist Layers
  • Kim SK, Lee H
  • 유기 저항막을 이용한 원자힘 현미경 양극산화 패터닝 기술
  • 김성경, 이해원
Abstract
Atomic force microscope (AFM)-based anodic oxidation lithography has gained great interests in fabricating nanometer scale features on semiconductor or metal substrates beyond the limitation of optical lithography. In this article AFM anodic oxidation lithography and its organic resist layers are introduced based on our previous works. Organic resist layers of self-assembled monolayers, Langmuir-Blodgett films and polymer films are suggested to play a key role in enhancing the aspect ratio of producing features, the lithographic speed, and spatial precision in AFM anodic oxidation lithography.

원자힘 현미경 양극산화 패터닝 기술에 관한 연구를 유기 저항막의 종류 및 그들의 특성을 토대로 다루었다. 본 연구실에서 수행한 자기조립막, 랑뮈어-블라짓막, 고분자막 위에서의 원자힘 현미경 양극산화 패터닝에 대한 연구결과를 중심으로, 유기 저항막 위에서의 원자힘 현미경 양극산화 패터닝 기술에 대한 이해를 돕고자 하였다. 현실적인 공정 속도에서 높은 종횡비의 패턴을 형성하기 위해 원자힘 현미경 양극산화 패터닝에 유기 저항막의 전기-기계적 특성, 젖음 특성, 에칭 저항 특성 등이 중요한 인자들임을 제안하였다.

Keywords: atomic force microscope; nanolithography; anodic oxidation or anodization; organic resist; self-assembled monolayer; Langmuir-Blodgett film; polymer resist

References
  • 1. Binnig G, Rohrer H, Gerber C, Weibel E, Phys. Rev. Lett., 49, 57 (1982)
  •  
  • 2. Binnig G, Quate CF, Gerber C, Phys. Rev. Lett., 56, 930 (1986)
  •  
  • 3. Marsh G, Materialstoday, 6, 28 (2003)
  •  
  • 4. Gould P, Materialstoday, 6, 34 (2003)
  •  
  • 5. Wouters D, Schubert US, Angew. Chem.-Int. Edit., 43, 2480 (2004)
  •  
  • 6. Liu GY, Xu S, Qian Y, Accounts Chem. Res., 33, 457 (2000)
  •  
  • 7. Nyffenegger RM, Penner RM, Chem. Rev., 97(4), 1195 (1997)
  •  
  • 8. Gates BD, Xu QB, Stewart M, Ryan D, Willson CG, Whitesides GM, Chem. Rev., 105(4), 1171 (2005)
  •  
  • 9. Lee SH, Lee HEncyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, Inc., New York, p109 (2004)
  •  
  • 10. Eigler DM, Schweizer DK, Nature, 344, 524 (1990)
  •  
  • 11. Lyo IW, Avouris P, Science, 253, 173 (1991)
  •  
  • 12. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA, Science, 283(5402), 661 (1999)
  •  
  • 13. Brandow SL, Dressick WJ, Dulcey CS, Koloski TS, Shirey LM, Schmidt J, Calvert JM, J. Vac. Sci. Technol. B, 15(5), 1818 (1997)
  •  
  • 14. Versen M, Klehn B, Kunze U, Reuter D, Wieck AD, Ultramicroscopy, 82, 159 (2000)
  •  
  • 15. Garfunkel E, Rudd G, Novak D, Wang S, Ebert G, Greenblatt M, Gustafsson T, Garofalini SH, Science, 246, 99 (1989)
  •  
  • 16. Radojkovic P, Schwartzkopff M, Gabriel T, Hartmann E, Appl. Phys. A-Mater. Sci. Process., 66, S701 (1998)
  •  
  • 17. Sheehan PE, Whitman LJ, William PK, Brent AN, Appl. Phys. Lett., 85, 1589 (2004)
  •  
  • 18. Lee SW, Park BJ, Yeom GY, Lee H, Nanotechnology, 16, 3137 (2005)
  •  
  • 19. Dagata JA, Schneir J, Haray HH, Evans CJ, Postek MT, Bennet J, Appl. Phys. Lett., 58, 2001 (1990)
  •  
  • 20. Silver RM, Ehrichs EE, de Lozanne AL, Appl. Phys. Lett., 51, 247 (1987)
  •  
  • 21. Baba M, Matsui S, Jpn. J. Appl. Phys., 29, 2854 (1990)
  •  
  • 22. Konsek SL, Coope RJN, Pearsall TP, Tiedje T, Appl. Phys. Lett., 70, 1846 (1997)
  •  
  • 23. Xu S, Liu GY, Langmuir, 13(2), 127 (1997)
  •  
  • 24. Liu JF, Cruchon-Dupeyrat S, Garmo JC, Frommer J, Liu GY, Nano Lett., 2, 937 (2002)
  •  
  • 25. Zhao J, Uosaki K, Nano Lett., 2, 137 (2002)
  •  
  • 26. Gordon AE, Fayfield RT, Litfin DD, Higman TK, J. Vac. Sci. Technol. B, 13(6), 2805 (1995)
  •  
  • 27. Sugimura H, Nakagiri N, J. Vac. Sci. Technol. A, 14(3), 1223 (1996)
  •  
  • 28. Stievenard D, Fontaine PA, Dubois E, Appl. Phys. Lett., 70, 3272 (1997)
  •  
  • 29. Avouris P, Hertel T, Martel R, Appl. Phys. Lett., 71, 285 (1997)
  •  
  • 30. Kim J, Oh Y, Lee H, Shin Y, Park S, Jpn. J. Appl. Phys., 37, 324 (1998)
  •  
  • 31. Legrand B, Stievenard D, Appl. Phys. Lett., 74, 4049 (1999)
  •  
  • 32. Snow ES, Campbell PM, Perkins FK, Appl. Phys. Lett., 75, 1476 (1999)
  •  
  • 33. Lee W, Oh Y, Kim ER, Lee H, Synth. Met., 117, 305 (2001)
  •  
  • 34. Ahn SJ, Jang YK, Lee H, Appl. Phys. Lett., 80, 2592 (2002)
  •  
  • 35. Lee H, Kim SA, Ahn SJ, Lee H, Appl. Phys. Lett., 81, 138 (2002)
  •  
  • 36. Lee W, Kim ER, Lee H, Langmuir, 18(22), 8375 (2002)
  •  
  • 37. Son MS, Kim ER, Lee H, J. Korean Phys. Soc., 41, 949 (2002)
  •  
  • 38. Kim SM, Lee H, J. Vac. Sci. Technol. B, 21(6), 2398 (2003)
  •  
  • 39. Bae SJ, Han C, Kim MS, Chung CC, Lee H, Nanotechnology, 16, 2082 (2005)
  •  
  • 40. Lee W, Lee H, Chun MS, Langmuir, 21(19), 8839 (2005)
  •  
  • 41. Tello M, Garcia R, Appl. Phys. Lett., 79, 424 (2001)
  •  
  • 42. A. Ulman, An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly, Academic Press, San Diego (1991)
  •  
  • 43. Lee HJ, Park HY, Koo SY, Lee H, Mater. Res. Soc. Proc., 739, 199 (2003)
  •  
  • 44. Li QG, Zheng JW, Liu ZF, Langmuir, 19(1), 166 (2003)
  •  
  • 45. Israelachvili JNIntermolecular and Surface Forces: With Applications to Colloidal and Biological Systems, 2nd ed., Academic Press, New York (1992)
  •  
  • 46. Kolbe H, Ann., 69, 257 (1849)
  •  
  • 47. Wilder K, Singh B, Kyser DF, Quate CF, J. Vac. Sci. Technol. B, 16, 6 (1998)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2006; 30(3): 187-195

    Published online May 25, 2006