Article
  • Liquid Crystal Alignment by Photoreactive 4-Hydroxyazobenzene Thin Film
  • Lee WJ, Kim W, Song K
  • 광감응성 4-Hydroxyazobenzene 박막의 액정 배향
  • 이원주, 김환기, 송기국
Abstract
The effects of molecular environments on photoisomerization of an azobenzene group were investigated using in-situ UV/Vis spectroscopy and optical anisotropy measurement technique. The reversible and repeatable photoisomerization reactions of azobenzene were observed by irradiating the film containing 4-hydroxyazobenzene and by measuring absorption intensities of the characteristic bands of trans and cis isomers simultaneously. When the self-assembled monolayer with azobenzene groups was used as an alignment layer for a liquid crystal cell, the homeotropic alignment was induced due to their compact packing structures of azobenzene groups along the vertical direction of the substrate. By irradiating UV light on this cell, the trans-azobenzene groups change to cis-isomers through the photoisomerization and then resulting in the planar alignment of liquid crystal molecules.

광감응성 azobenzene 그룹이 분자의 주위 환경에 따라 광이성화 반응이 변화하는 것을 in-situ UV/Vis 분광 실험법과 광학 이방성 측정법을 이용하여 조사하였다. 4-Hydroxyazobenzene을 포함하는 필름에 광조사함과 동시에 trans-isomer와 cis-isomer 특성 피크의 세기 변화를 측정하여 azobenzene 그룹의 가역적이며 반복적인 광이성화 반응을 알 수 있었다. Azobenzene 자기조립체 박막이 입혀진 기관을 액정 셀의 배향막으로 사용하여 액정의 배향을 유도하였을 때, trans-azobenzene 그룹들이 조밀한 packing을 하며 기판에 수직으로 배열한 자기조립체 구조 때문에 액정 분자들도 수직 homeotropic 배향을 하였다. 이와 같은 자기조립체 박막의 액정 셀에 UV 빛을 노광하면 azobenzene 그룹이 광이성화 반응을 일으켜 cis-isomer로 변하게 되며, 이로 인해 액정의 배향이 수직에서 수평 planar 배향으로 변함을 알 수 있었다.

Keywords: azobenzene; photoisomerization; self-assembly; liquid crystal alignment

References
  • 1. Todorov T, Nikolova L, Tomova N, Appl. Optics, 23, 4309 (1984)
  •  
  • 2. Ho MS, Natansohn A, Rochon P, Macromolecules, 28(18), 6124 (1995)
  •  
  • 3. Natansohn A, Rochon P, Meng XS, Barrett C, Buffeteau T, Bonenfant S, Pezolet M, Macromolecules, 31(4), 1155 (1998)
  •  
  • 4. Stumpe J, Lasker L, Ficher T, Rutloh M, Thin Solid Films, 284, 252 (1996)
  •  
  • 5. Kulinna C, Hvilsted S, Hendann C, Siesler HW, Ramanujam PS, Macromolecules, 31(7), 2141 (1998)
  •  
  • 6. Schadt M, Schmitt K, Kozinkov V, Chigrinov VG, Jpn. J. Appl. Phys., 31, 2155 (1992)
  •  
  • 7. Ichimura K, Akita Y, Akiyama H, Kudo K, Hayashi Y, Macromolecules, 30(4), 903 (1997)
  •  
  • 8. Tomita H, Kudo K, Ichimura K, Liq. Cryst., 20, 171 (1996)
  •  
  • 9. Iimura Y, Satoh T, Kobayashi S, Hashimoto T, J. Photopolym. Sci. Tech., 8, 258 (1995)
  •  
  • 10. Lee BH, Ham SK, Lim JC, Song K, Polym.(Korea), 21(6), 1059 (1997)
  •  
  • 11. Lee WJ, Lim JC, Paek SH, Song K, Chang JY, Korea Polym. J., 9(6), 339 (2001)
  •  
  • 12. Natansohn A, Rochon P, Ho MS, Barrett C, Macromolecules, 28(12), 4179 (1995)
  •  
  • 13. Liu Z, Loo BH, Baba R, Fujishima A, Chem. Lett., 1023 (1990)
  •  
  • 14. Choi SH, Kim IS, Song K, Mol. Cryst. Liq. Cryst., 337(-), 69 (1999)
  •  
  • 15. Lee WS, Choi SH, Song K, Mol. Cryst. Liq. Cryst., 349(-), 83 (2000)
  •  
  • 16. Seki T, Fukuda R, Tamaki T, Ichimura K, Thin Solid Films, 243(1-2), 675 (1994)
  •  
  • 17. Kawai T, Umemura J, Takenaka T, Langmuir, 5, 1378 (1989)
  •  
  • 18. McRae E, Kasha MPhysical Process in Radiation Biology, Academic Press, New York, p 23 (1964)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2005; 29(3): 308-313

    Published online May 25, 2005

  • Received on Mar 2, 2005
  • Accepted on May 10, 2005