Article
  • Characterization of Ion-conductive Behaviors for Crystalline/Amorphous Solid Polyether Electrolytes Using Supercritical CO2 Fluid
  • Kwak GH, Tominaga Y, Asai S, Sumita M, Hong SK
  • 초임계 이산화탄소 유체를 이용한 결정성/무정형 폴리에테르 전해질의 이온전도특성 연구
  • 곽근호, Tominaga Y, Asai S, Sumita M, 홍성권
Abstract
The effect of the supercritical carbon dioxide (scCO2) on ion-conductive behaviors for polyether electrolytes based on both poly(ethylene oxide) (PEO) and poly [oligo(oxyethylene glycol) methacrylate] (PMEO) with lithium triflate, LiCF3SO3, has been investigated. In particular, the present research is a new concept for improving the ionic conductivity of polyether electrolytes. The maximum ionic conductivity (σmax) at room temperature of the PEO electrolyte was more than 100 times higher, and the σmax at 90 ℃ of the PMEO electrolyte was 30 times improved by the scCO2 treatment, respectively. It was revealed that the penetration of CO2 molecules into the polymer matrix causes the increase of carrier ions by ion-dispersion effect and the decrease of glass transition temperature (Tg) by plasticizing effect that results in the improvement of the ion transport behaviors.

결정성 및 무정형 고분자 전해질의 이온전도 거동에 미치는 초임계 이산화탄소(scCO2) 유체의 영향에 대해 조사하였다. 본 연구는 폴리에테르 전해질의 이온전도도 향상에 관한 새로운 개념의 접근 방법이다. scCO2 처리결과, 결정성 PEO 전해질의 경우 실온에서 100배 이상의, 무정형 PMEO 전해질은 90 ℃에서 30배 가까운 이온전도도의 상승을 나타내었다. 이는 고분자 매트릭스 내부로 CO2 분자가 침투함으로써 이온 분산효과로 캐리어 이온의 수를 증가시키고 가소화 효과로 인해 유리전이온도를 저하시켜 이온이동도를 향상시킨 결과이다.

Keywords: poly(ethylene oxide); poly [oligo(oxyethylene glycol) methacrylate]; supercritical CO2; ionic conductivity; Raman spectroscopy

References
  • 1. Wright PV, Br. Polym. J., 7, 319 (1975)
  •  
  • 2. Armand MB, Chabagno JM, Duclot MTFast Ion Transport in Solids, eds. by P. Vashishta, J.N. Mundy, and G.K. Shennoy, p. 131, North-Holland, Amsterdam (1979)
  •  
  • 3. Sylla S, Sanchez JY, Armand M, Electrochim. Acta, 37, 1699 (1992)
  •  
  • 4. Ratner MA, Shriver DF, Chem. Rev., 88, 109 (1988)
  •  
  • 5. Eggert G, Heitbaum J, Electrochim. Acta, 31, 1443 (1986)
  •  
  • 6. Croce F, Appetecchi GB, Persi L, Scrosati B, Nature, 394, 456 (1998)
  •  
  • 7. Lee YJ, Choi BK, Polym.(Korea), 22(5), 765 (1998)
  •  
  • 8. Kim KM, Park NG, Ryu KS, Chang SH, Polymer, 43(14), 3951 (2002)
  •  
  • 9. Kim DW, Park JK, Rhee HW, Kim HD, Polym. J., 26, 993 (1994)
  •  
  • 10. Lee YG, Park JK, J. Power Sources, 97-98(-), 616 (2001)
  •  
  • 11. Jun SM, Moon SI, Kim WS, Min KE, Polym.(Korea), 22(2), 275 (1998)
  •  
  • 12. Craven JR, Mobbs RH, Booth C, Giles JRM, Makromol. Chem. Rapid Commun., 7, 81 (1986)
  •  
  • 13. Xu K, Angell CA, Electrochim. Acta, 40(13-14), 2401 (1995)
  •  
  • 14. Fasolka MJ, Mayes AM, Annu. Rev. Mater. Res., 31, 323 (2001)
  •  
  • 15. Allcock HR, Krause WE, Macromolecules, 30(19), 5683 (1997)
  •  
  • 16. Tominaga Y, Ito K, Ohno H, Polymer, 38(8), 1949 (1997)
  •  
  • 17. Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M, Macromolecules, 32(5), 1541 (1999)
  •  
  • 18. Yoshio M, Mukai T, Kanie K, Yoshizawa M, Ohno H, Kato T, Adv. Mater., 14, 351 (2002)
  •  
  • 19. Gray FMSolid Polymer Electrolytes, VCH, New York (1991)
  •  
  • 20. Bruce PG, Vincent CA, J. Chem. Soc.-Faraday Trans., 89, 3187 (1993)
  •  
  • 21. Scrosati B, MacCallum JR, Vincent CAPolymer Electrolyte Reviews, p. 315, Elsevier, New York (1989)
  •  
  • 22. Prisyazhnyi VD, Lisin VI, Lee ESNew Promising Electrochemical Systems for Rechargeable Batteries, eds. by V. Barukov and F. Beck, p. 101, Elsevier, New York (1996)
  •  
  • 23. Arai Y, Sako T, Takebayashi YSuper-Critical Fluids, Springer-Verlag, New York (2002)
  •  
  • 24. Poliakoff M, King P, Nature, 412, 125 (2001)
  •  
  • 25. Goel SK, Beckman EJ, Polym. Eng. Sci., 34(14), 1137 (1994)
  •  
  • 26. Cooper AI, J. Mater. Chem., 10, 207 (2000)
  •  
  • 27. Canelas DA, Desimone JM, Adv. Polym. Sci., 133, 103 (1997)
  •  
  • 28. Lee KN, Lee HJ, Kim JH, Polym.(Korea), 24(1), 8 (2000)
  •  
  • 29. Bruce PGSolid State Electrochemistry, Cambridge University Press, Cambridge (1995)
  •  
  • 30. Rhodes CP, Frech R, Macromolecules, 34(8), 2660 (2001)
  •  
  • 31. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG, Nature, 412, 520 (2001)
  •  
  • 32. Shieh YT, Su JH, Manivannan G, Lee PH, Sawan SP, Spall WD, J. Appl. Polym. Sci., 59(4), 707 (1996)
  •  
  • 33. Kim SK, Kang YK, Rhee HW, Lee C, Polym.(Korea), 25(4), 568 (2001)
  •  
  • 34. Peterson G, Jacobsson P, Torell LM, Electrochim. Acta, 37, 1495 (1992)
  •  
  • 35. Frech R, Huang W, Dissanayake MAKL, Mater. Res. Soc. Symp. Proc., 369, 523 (1995)
  •  
  • 36. Petersen G, Torell CM, Panero S, Scrosati B, daSilva CJ, Smith M, Solid State Ion., 60, 50 (1993)
  •  
  • 37. Xu WY, Smid J, Solid State Ion., 60, 133 (1992)
  •  
  • 38. Tominaga Y, Izumi Y, Kwak GH, Asai S, Sumita M, Mater. Lett., 57, 777 (2002)
  •  
  • 39. Kwak GH, Tominaga Y, Asai S, Sumita M, Electrochim. Actain press
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2002; 26(6): 785-791

    Published online Nov 25, 2002

  • Received on Jul 12, 2002
  • Accepted on Oct 9, 2002