Article
  • Polyurethane Nanocomposites with Organoclay
  • An YU, Chang JH, Park YH, Park JM
  • 유기화 점토를 이용한 폴리우레탄 나노 복합재료
  • 안영욱, 장진해, 박연흠, 박종민
Abstract
The properties of polyurethane (PU) nanocomposites with organoclay have been compared in terms of their thermo-mechanical properties, morphology, and gas permeability. Hexadecylamine-montmorillonite (C16-MMT) was used as an organoclay to make PU hybrid films. The properties were investigated as a function of organoclay content (1-4 wt%) in the PU matrix. Transmission electron microscopy (TEM) photographs showed that most clay layers were dispersed homogeneously into the matrix polymer in nano-scale, although some particles of clay were agglomerated. We also found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films while gas permeability was reduced. Even at low organoclay content (<5 wt%), the PU nanocomposite showed much better thermo-mechanical properties, and lower gas permeability than pure PU.

폴리우레탄을 이용한 나노 복합재료의 열적, 기계적 성질, 모폴로지, 그리고 기체 투과 정도를 유기화 점토의 함량에 따라 조사 후 비교하였다. 유기화 점토는 헥사데실아민-몬모릴로나이트 (C16-MMT)를 사용하였으며, 매트릭스 고분자인 폴리우레탄에 대해 1-4 wt%로 각각 분산시키면서 물성을 조사하였다. 유기화 점토가 일정한 wt%에서 일부는 뭉쳤지만 대부분은 매트릭스 고분자에 고루 분산됨을 전자현미경으로부터 알 수 있었고, 열적 성질 및 기계적 성질은 분산도에 따라 증가함을 알 수 있었다. 기체 투과도는 유기화 점토 양의 증가에 따라 현저히 감소함을 보여주었다. 본 연구로부터, 소량의 유기화 점토 (<5 wt%)를 분산시킨 나노 복합재료는 순수한 폴리우레탄 보다 열적, 기계적 성질 및 기체 투과 방지에 좋은 효과가 있음을 알았다.

Keywords: polyurethane nanocomposites; organoclay; thermo-mechanical properties; morphology; gas permeability

References
  • 1. Woods GThe ICI Polyurethane Book, Chapter 1, UK, Wiley (1990)
  •  
  • 2. Comstock MJUrethane Chemistry and Applications, ACS Symposium Series, Vol. 172, Chapter 1 (1981)
  •  
  • 3. Fabris HJAdvances in Urethane Science and Technology, Technomic Publishing Co, New York (1976)
  •  
  • 4. Zuo M, Takeichi T, Polymer, 40(18), 5153 (1999)
  •  
  • 5. Masiulanis B, Zielinski RJ, J. Appl. Polym. Sci., 30, 2731 (1985)
  •  
  • 6. Liao DC, Hsieh KH, J. Polym. Sci. A: Polym. Chem., 32(9), 1665 (1994)
  •  
  • 7. Wang Z, Pinnavaia TJ, Chem. Mater., 10, 3769 (1998)
  •  
  • 8. Tien YI, Wei KH, Polymer, 42(7), 3213 (2001)
  •  
  • 9. Zilg C, Thomann R, Mulhaupt R, Pinter J, Adv. Mater., 11, 49 (1999)
  •  
  • 10. Giannelis EP, Adv. Mater., 8, 29 (1996)
  •  
  • 11. Yang Y, Zhu ZK, Yin J, Wang XY, Qi ZE, Polymer, 40(15), 4407 (1999)
  •  
  • 12. Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997)
  •  
  • 13. Hsiao SH, Liou GS, Chang LM, J. Appl. Polym. Sci., 80(11), 2067 (2001)
  •  
  • 14. Zilig C, Mulhaupt R, Finter J, Macromol. Chem. Phys., 200, 661 (1999)
  •  
  • 15. Ke YC, Lu JK, Yi XS, Zhao J, Qi ZN, J. Appl. Polym. Sci., 78(4), 808 (2000)
  •  
  • 16. Wen J, Wikes GL, Chem. Mater., 8, 1667 (1996)
  •  
  • 17. Fischer HR, Gielgens LH, Koster TPM, Acta. Polym., 50, 122 (1999)
  •  
  • 18. Carrado KA, Xu L, Chem. Mater., 10, 1440 (1998)
  •  
  • 19. Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000)
  •  
  • 20. Zhu ZK, Yang Y, Yin J, Wang XY, Ke YC, Qi ZN, J. Appl. Polym. Sci., 73(11), 2063 (1999)
  •  
  • 21. Chang JH, Park DK, Ihn KJ, J. Polym. Sci. B: Polym. Phys., 39(5), 471 (2001)
  •  
  • 22. Chang JH, Park KM, Cho DH, Yang HS, Ihn KJ, Polym. Eng. Sci., 41(9), 1514 (2001)
  •  
  • 23. Zoppi RA, das Neves S, Nunes SP, Polymer, 41(14), 5461 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2002; 26(3): 381-388

    Published online May 25, 2002

  • Received on Dec 14, 2001
  • Accepted on Mar 29, 2002