Article
  • Thermal Properties and Fracture Toughness of Difunctional Epoxy Resins Cured by Catalytic Initiators
  • Park SJ, Heo GY, Lee JR
  • 촉매형 개시제로 경화된 이관능성 에폭시 수지의 열적 특성 및 파괴인성
  • 박수진, 허건영, 이재락
Abstract
In this work, two thermal cationic latent catalysts, i.e., triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized. And the thermal and mechanical properties of difunctional epoxy (diglycidylether of bisphenol A, DGEBA) resins initiated by 1 phr of either TBPH or BMPH catalyst were investigated. As experimental results, the epoxy/TBPH system showed higher curing temperature and critical stress intensity factor (KIC) than those of epoxy/BMPH. This could be interpreted in terms of slow thermal diffusion rate and bulk structure of four phenyl groups in TBPH. However, the decomposed activation energy determined from Coats-Redfern method was lower in the case of epoxy/TBPH. This result was probably due to the fact that broken short chain structure was developed by steric hindrance of TBPH.

본 연구에서는 두 가지 열잠재성 양이온 촉매인 triphenyl benzyl phosphoinium hexafluoroantimonate (TBPH)와 benzyl 2-methylpyrazinium hexafluoroantimonate (BMPH)를 새로이 합성하였다. 그리고 TBPH 혹은 BMPH 1 phr에 의해 개시되어진 이관능성 에폭시 수지(diglycidylether of bisphenol A, DGEBA)의 열 및 기계적 특성들을 연구하였다. 그 실험적인 결과들로서, 에폭시/TBPH 시스템은 에폭시/BMPH 시스템 보다 더 높은 경화 온도와 임계응력 세기 인자 (KIC) 값을 보였다. 이것은 TBPH에서 4개의 페닐기의 느린 열확산 속도와 벌크 구조 때문으로 사료된다. 그러나, Coats-Redfern 방법에 의하여 결정된 분해 활성화 에너지는 TBPH의 경우가 더 낮게 나타났다. 이러한 결과는 TBPH의 입체장애에 의해서 끊어진 짧은 사슬 구조가 발달되었기 때문인 것으로 사료된다.

Keywords: thermal cationic latent catalyst; critical stress intensity factor; bulk structure; Coats-Redfern; steric hindrance

References
  • 1. Rosato SV, Dimattia DP, Rosato DVDisigning with Plastic and Composites, Nostrand Reinhold, New York (1991)
  •  
  • 2. Kwak GH, Park SJ, Lee JR, J. Appl. Polym. Sci., 78(2), 290 (2000)
  •  
  • 3. Shin S, Jang J, Polym. Bull., 39(3), 353 (1997)
  •  
  • 4. Ghaemy M, Khandani MH, Eur. Polym. J., 34, 477 (1998)
  •  
  • 5. Zhong ZK, Zheng SX, Huang JY, Cheng XG, Guo QP, Wei J, Polymer, 39(5), 1075 (1998)
  •  
  • 6. Bucknall CB, Gilbert AH, Polymer, 30, 213 (1989)
  •  
  • 7. Park WH, Lee JK, J. Appl. Polym. Sci., 67(6), 1101 (1998)
  •  
  • 8. Kim YC, Park SJ, Lee JR, Polym. J., 29, 759 (1997)
  •  
  • 9. Crivello JV, J. Polym. Sci. A: Polym. Chem., 37(23), 4241 (1999)
  •  
  • 10. Murai S, Nakano Y, Hayase S, J. Appl. Polym. Sci., 80(2), 181 (2001)
  •  
  • 11. Toneri T, Sanda F, Endo T, Macromolecules, 34(5), 1518 (2001)
  •  
  • 12. Park SJ, Heo GY, Lee JR, Shim SY, Suh DH, Polym.(Korea), 25(4), 558 (2001)
  •  
  • 13. McGowen JA, Mathlas LJ, Polym. Compos., 13, 348 (1997)
  •  
  • 14. Park SJ, Seo MK, Lee JR, Lee DR, J. Polym. Sci. A: Polym. Chem., 39(1), 187 (2001)
  •  
  • 15. Fessenden RJ, Fessenden JSOrganic Chemistry, 4nd Ed., p. 176, Brooks, Belmont (1992)
  •  
  • 16. Lin RH, Chen CL, Kao LH, Yang PR, J. Appl. Polym. Sci., 82(14), 3539 (2001)
  •  
  • 17. SoscunMachado HJ, Hinchliffe A, J. Molecular Struc., 339, 255 (1995)
  •  
  • 18. Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000)
  •  
  • 19. Mathew D, Nair CPR, Krishnan K, Ninan KN, J. Polym. Sci. A: Polym. Chem., 37(8), 1103 (1999)
  •  
  • 20. Doyle CD, J. Appl. Polym. Sci., 5, 285 (1961)
  •  
  • 21. Park SJ, Cho MS, J. Mater. Sci., 35(14), 3525 (2000)
  •  
  • 22. Glauser T, Johansson M, Hult A, Macromol. Mater. Eng., 274, 25 (2000)
  •  
  • 23. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001)
  •  
  • 24. Peterson REStress Concentration Factors, Willey Interscience, New York (1974)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2002; 26(3): 344-352

    Published online May 25, 2002

  • Received on Feb 14, 2002
  • Accepted on Mar 15, 2002