Article
  • Electrochemical Characterization and Mechanical Properties of PEO-like Solid Polymer Electrolyte Based on Bisphenol A Ethoxylate Diacrylate
  • Kim SK, Kang YK, Rhee HW, Lee C
  • Bisphenol A ethoxylate diacrylate를 가교제로 사용한 PEO계 고분자 전해질의 전기화학적 특성 및 물성
  • 김석구, 강영구, 이희우, 이창진
Abstract
PEO-like solid polymer electrolytes based on bisphenol A ethoxylate acrylate were synthesized and their electrochemical properties and mechanical stability were studied. Low molecular weight poly(ethylene glycol) dimethyl ether (PEGDMe) was added to increase the conductivity of the electrolyte. The maximum conductivity of the resulting polymer electrolyte was found to be 1.0 x 10(-3) S/cm [Bisphenol A ethoxylate diacrylate ([EO]/[phenol]= 15), PEGDMe250 80 wt%, LiCF3SO3] at 30℃. Tensile strength of the free standing polymer electrolyte films was measured to be in the range of 0.4 ~ 5 MPa and these polymer electrolyte films did not show a crack even in 90℃ and 180℃ bending against φ=3 mm bar. These electrolytes showed oxidation stability up to 4.5 V vs. lithium reference electrode.

Bisphenol A ethoxylate diacrylate를 가교제로 사용하여 PEO계 고분자 고체전해질을 제조하였으며, 이의 전기화학적 특성 및 기계적인 물성을 조사하였다. 제조된 고분자 고체전해질은 이온전도도를 높이기 위해 비휘발성의 PEGDMe [poly(ethylene glycol) dimethyl ether]를 가소제로 도입하였다. 첨가된 PEGDMe 함량이 높을수록 전기전도도는 증가하였다. 최대 이온전도도는 30에서 1.0 X 10(-3)S/cm [Bisphenol A ethoxylate diacrylate ([EO]/[phenol]=15), PEGDMe250 80 wt%, LiCF3SO3]이었다. 제조된 고분자 전해질의 인장강도는 0.4 ~ 5 MPa이었으며 Φ=3 mm 봉에 대해 90° 및 180° 의 굽힘에도 균열을 발생하지 않았다. 리튬 기준전극에 대해 4.5V 이상의 산화전위에도 전기화학적으로 안정하였다.

Keywords: bisphenol A ethoxylate diacrylate; PEO; PEGDMe; polymer electrolytes; UV-curing

References
  • 1. Smid J, Fish D, Khan IM, Zhou GSilicon Based Polymer Science, eds. by J.M. Zeigler and F.W. Gordon Fearon, p. 113, American Chemical Society, Washington (1990)
  •  
  • 2. Blonsky PM, Shiriver DF, Austin PE, Allcock HR, J. Am. Chem. Soc., 106, 6854 (1984)
  •  
  • 3. Allcock HR, Kuharcik SE, Reed CS, Napierala ME, Macromolecules, 29(10), 3384 (1996)
  •  
  • 4. Allcock HR, Ravikiran R, Oconnor SJ, Macromolecules, 30(11), 3184 (1997)
  •  
  • 5. Nishimoto A, Agehara K, Furuya N, Watanabe T, Watanabe M, Macromolecules, 32(5), 1541 (1999)
  •  
  • 6. Kono M, Hayashi E, Watanabe M, J. Electrochem. Soc., 145(5), 1521 (1998)
  •  
  • 7. Kelly IE, Owen JR, Steele BCH, J. Power Sources, 14, 13 (1985)
  •  
  • 8. Abraham KM, Jiang Z, Carroll B, Chem. Mater., 9, 1978 (1997)
  •  
  • 9. Abraham KM, Jiang Z, J. Electrochem. Soc., 144(6), L136 (1997)
  •  
  • 10. Kang YK, Kim HJ, Kim E, Oh B, Cho JH, J. Power Sources, 92(1-2), 255 (2001)
  •  
  • 11. Kang Y, Kim HJ, Kim E, Oh B, Cho JH, Proc. Electrochem. Soc., 99-25, 534 (1999)
  •  
  • 12. Kim H, Oh B, Kang Y, Polym. Bull., 44(5-6), 509 (2000)
  •  
  • 13. Choi Y, Kim SK, Chang KH, Lee MH, J. Appl. Electrochem., 27(9), 1118 (1997)
  •  
  • 14. Kim H, Kim E, Rhee SB, Korea Polym. J., 4(2), 83 (1996)
  •  
  • 15. Fenton DE, Parker JM, Wright PV, Polymer, 14, 589 (1973)
  •  
  • 16. Armand MMPolymer Electrolyte Review, eds. by J.R. McCallum and C.A. Vincent, vol. 1, p. 1, Elsevier, London (1987)
  •  
  • 17. Christie AM, Christie L, Vincent CA, J. Power Sources, 74(1), 77 (1998)
  •  
  • 18. Vallee A, Besner S, Prud'homme J, Electrochim. Acta, 37, 1579 (1992)
  •  
  • 19. Kakihana M, Schantz S, Torell LM, Borjesson LSolid State Ionics, Mat. Res. Soc. Symp. Proc, eds. by G.A. Nazri, R.A. Huggins, and D.F. Shriver, vol. 135, p. 351, Mat. Res. Soc., Pittsburgh (1989)
  •  
  • 20. Gary FMPolymer Electrolytes, chap 3, The Royal Soc. of Chem., London (1997)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(4): 568-574

    Published online Jul 25, 2001

  • Received on Mar 28, 2001