Article
  • A Study on the Ester Interchange Reaction of Dimethyl Naphthalate with Ethylene Glycol
  • Sho SY, Cheong SI
  • Dimethyl Naphthalate와 Ethylene Glycol의 에스테르 교환반응에 관한 연구
  • 소순용, 정성일
Abstract
The kinetics of ester interchange reaction of dimethyl naphthalate(DMN) with ethylene glycol(EG) has been studied in the range of 180-200 ℃ using zinc and manganese catalysts. The reaction was performed in a semibatch reactor under nonisothermal condition and the degree of reaction was calculated from experimental data of methanol removal rate and reaction temperature. As a reaction model, both the functional group model and the molecular species model were applied and analysed. In case of zinc catalyst, the ratio of reaction rate of methyl hydroxyethyl naphthalate(MHEN) with EG on that of DMN with EG is about 1.4, whereas in case of manganese catalyst the ratio is about 4.3, which implies that the reaction rate is quite dependent on the type of catalyst. In case of zinc catalyst, the reaction order of catalyst concentration on either DMN or MHEN and EG is less than 1, whereas in case of manganese catalyst, the reaction order is larger than 1. The activation energy for zinc and manganese catalyst, irrespective of the type of molecular species, e.g., DMN and MHEN, were found to be 25000 and 28750 cal/mol, respectively. As a result of comparing two reaction model, the molecular species model fits well for the experimental data.

Dimethyl naphthalate(DMN)와 ethylene glycol(EG)을 180-200 ℃범위에서 아연과 망간촉매를 사용하여 에스테르 교환반응시켜 반응속도를 살펴보았다. 반응은 반회분식 반응기에서 비등온 조건으로 진행되었고 반응온도와 메탄올 유출량으로 반응성을 평가하였다. 반응모델로서는 관능기 모델과 분자종 모델을 적용하여 상호 비교하였다. 아연촉매를 사용할 경우 DMN과 EG의 반응속도는 methyl hydroxyethyl naphthalate(MHEN)와 EG의 반응속도에 비해 1.4배정도 였으나 망간촉매를 사용할 경우 4.3배정도로 촉매 종류에 따라 반응성이 크게 차이가 있음을 알 수 있었다. 아연촉매의 경우 DMN 및 MHEN과 EG의 반응에 대한 촉매농도의 반응차수는 1보다 작았으나, 망간촉매의 경우 오히려 1보다 컸다. 활성화에너지는 DMN과 MHEN의 분자종 차이에 관계없이 아연과 망간촉매의 경우 각각 25000, 28750 cal/mol이었다. 두 가지 반응모델을 비교하여 본 결과 분자종 모델이 반응현상을 잘 표현함을 알 수 있었다.

Keywords: PEN; ester interchange reaction; modeling; DMN

References
  • 1. Peebles LH, Wagner WS, J. Phys. Chem., 63, 1206 (1959)
  •  
  • 2. Challa G, Makromol. Chem., 38, 123 (1960)
  •  
  • 3. Fontana CM, J. Polym. Sci. A: Polym. Chem., 6, 2343 (1968)
  •  
  • 4. Tomita K, Ida K, Polymer, 14, 55 (1973)
  •  
  • 5. Yamanis J, Adelman M, J. Polym. Sci. A: Polym. Chem., 14, 1945 (1976)
  •  
  • 6. Yamanis J, Adelman M, J. Polym. Sci. A: Polym. Chem., 14, 1961 (1976)
  •  
  • 7. Ravindranath K, Mashelkar RA, J. Polym. Sci. A: Polym. Chem., 20, 3447 (1982)
  •  
  • 8. Datye KV, Raje HM, J. Appl. Polym. Sci., 30, 205 (1985)
  •  
  • 9. Barandiaran MJ, Asua JM, J. Polym. Sci. A: Polym. Chem., 27, 4241 (1989)
  •  
  • 10. Park SS, Im SS, Kim DK, Polym.(Korea), 17(3), 324 (1993)
  •  
  • 11. Park SS, Im SS, Kim DK, J. Polym. Sci. A: Polym. Chem., 32(15), 2873 (1994)
  •  
  • 12. Wang CS, Sun YM, J. Polym. Sci. A: Polym. Chem., 32(7), 1295 (1994)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2001; 25(1): 25-32

    Published online Jan 25, 2001

  • Received on Aug 25, 2000