Article
  • Influence of Activation Temperature on Surface and Adsorption Properties of PAN-based Activated Carbon Fibers/Phenolic Resin Matrix Composites
  • Park SJ, Kim KD, Lee JR
  • 활성화 온도에 의한 PAN계 활성탄소섬유/페놀수지 복합재료의 표면 및 흡착특성
  • 박수진, 김기동, 이재락
Abstract
PAN-based activated carbon fibers/phenolic resin matrix composites(ACFCs) were manufactured via molding process with oxidized carbon fabrics(plain-type) and phenolic resin(resole-type) compounded by 70 : 30wt%. The green body (as molded) was submitted to carbonization(at 1000 ℃) in an inert enviroment and activation (at 700, 800, 900 and 1000 ℃) in a CO2 enviroment. In this work, the influence of activation temperatures was investigated in surface properties, such as pH, acid-and base-values by titration method, and inadsorption properties, i.e., specific surface area and pore structures by BET-method of the composites. Also, the pressure drops of the specimens were calibrated by ASTM. As a results, the activation temperature influenced the surface property of ACFSc. When the activation temperature was higher than 900℃, the surface was gradually developed in basic nature. And, the evolutions of specific surface area, total pore volume and pore size distribution of ACFCs could be easily confirmed the dependence on the activation temperature. Among them, well-developed pore structure from adsorption characteristics was charged of the ACFCs activated at 900℃. Also, the pressure drop was slightly decreased with increasing the temperature due to increasing the burn-off with heat treatment temperature of ACFCs.

산화처리 된 평직형태의 탄소섬와 resole형태의 페놀수지를 7:3 중량비로 혼합하여 성형공정에 EK라 탄소섬유/페놀수지 복합재료를 제조하였으며, 이를 다시 불활성 분위기에서의 탄화(1000°C) 및 CO2 분위기에서 활성화(700, 800, 900 및 1000°C)시켜 PAN계 활성탄소섬유/페놀수지ㅣ 복합재료를 제조하였다. 본 연구에서는 이렇게 제조된 복합재료에 활성화 온도가 미치는 여향을 중화 적정법에 따른 pH, 표면산도 및 표면 염기도 등의 표면성질과 BET 방법에 EK른 비손실을 측정하였다. 결과적으로, 활성화 온도는ㄴ 그 표면 성질의 변화에 영향을 주어, 900°C 이상의 온도에서 시료으이 표면은 점차 염기성이 커지는 것을 확인할 수 있었다. 또한, 비표면적, 총기공 부피 및 기공 크기 분포도 등의 발달은 활성화 온도으이 증가에 따라 점차 증가함을 쉽게 확인할 수 있으며, 그 중 활성화 온도가 900°C인 경우 가장 발달한 것으로 나타났다. 마찬가지로, 활성화 온도의 증가에 따라 시편 양 단면에 걸리는 압력손실은 점차 감소하였으며, 이것은 열처리 온도에 의한 활성탄소섬유 복합재료의 질량손신에 의한 것으로 사료된다.

References
  • 1. Jang BZAdvanced Polymer Composites, ASM International, Ohio, 1994 (1994)
  •  
  • 2. Mallick PKFiber-reinforced Composites, 2nd ed., Marcel Dekker, New York, 1993 (1993)
  •  
  • 3. Park SJ, Lee JR, J. Mater. Sci., 33(3), 647 (1998)
  •  
  • 4. Lee JC, Lee BH, Kim BG, Park MJ, Lee DY, Kuk IH, Chung H, Kang HS, Lee HS, Ahn DH, Carbon, 35, 1479 (1997)
  •  
  • 5. Kimber GM, Jagtoyen M, Fei YQ, Derbyshire FJ, Gas Sep. Purif., 10(2), 131 (1996)
  •  
  • 6. Donnet JB, Bansal RCCarbon Fibers, 2nd ed., Marcel Dekker, New York, 1990 (1990)
  •  
  • 7. Li ZJ, Kruk M, Jaroniec M, Ryu SK, J. Colloid Interface Sci., 204(1), 151 (1998)
  •  
  • 8. Suzuki M, Carbon, 32, 577 (1994)
  •  
  • 9. Leboda R, Skubiszewskazieba J, Bogillo VI, Langmuir, 13(5), 1211 (1997)
  •  
  • 10. Park SJ, Kim KD, Polym.(Korea), 22(6), 994 (1998)
  •  
  • 11. Komatsubara Y, Ida S, Fujitsu H, Mochida I, Fuel, 63, 1738 (1984)
  •  
  • 12. Ahmadpour A, King BA, Do DD, Ind. Eng. Chem. Res., 37(4), 1329 (1998)
  •  
  • 13. Evans MJB, Halliop E, Macdonald JAF, Carbon, 37, 269 (1999)
  •  
  • 14. Dubinin MM, Radushkevich LV, Dokl. Akad. Nauk. SSSR, 55, 331 (1947)
  •  
  • 15. Donohue MD, Aranovich GL, J. Colloid Interface Sci., 205(1), 121 (1998)
  •  
  • 16. Raveendran K, Ganesh A, Fuel, 77(7), 769 (1998)
  •  
  • 17. Bansal RC, Donnet JB, Stoeckli FActive Carbon, Marcel Dekker, New York, 1988 (1988)
  •  
  • 18. Fu R, Zeng H, Lu Y, Carbon, 32, 593 (1994)
  •  
  • 19. Dimotakis ED, Cal MP, Economy J, Rood MJ, Larson SM, Environ. Sci. Technol., 29, 1876 (1995)
  •  
  • 20. Park SJ, Kim KD, J. Colloid Interface Sci., 212(1), 186 (1999)
  •  
  • 21. Tributsch H, Pohlmann L, Science, 279(5358), 1891 (1998)
  •  
  • 22. Leon y Leon CA, Solar JM, Calemma V, Radovic LR, Carbon, 30, 797 (1992)
  •  
  • 23. Boehm HP, Diehl E, Heck W, Sappok R, Angew. Chem., 76, 742 (1964)
  •  
  • 24. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  •  
  • 25. Savage GCarbon-Carbon Composites, Chapman & Hall, London, 1993 (1993)
  •  
  • 26. Brunauer S, Deming LS, Deming WS, Teller E, J. Am. Chem. Soc., 62, 1723 (1940)
  •  
  • 27. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
  •  
  • 28. Aarden FB, Kerkhof PJAM, van der Zanden AJJ, AIChE J., 45(2), 268 (1999)
  •  
  • 29. de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga TV, J. Colloid Interface Sci., 21, 405 (1966)
  •  
  • 30. Matteson MJ, Orr CFiltration, Principles and Particles, Marcel Dekker, New York, 1987 (1987)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2000; 24(1): 97-104

    Published online Jan 25, 2000