Article
  • Electro-optic Property of the Nonlinear Optical Organic/Inorganic Composite Material with Polyimide Synthesized Using 4,4'-(Hexafluorisopropylidene)dianiline
  • Lee SK, Choi DH, Lee YT
  • 4-4`(Hexafluoroisopropylidene)dianiline으로 합성된 폴리이미드를 이용한 비선형 광학 유기/무기복합재료의 전기광학 특성
  • 이성길, 최동훈, 이용택
Abstract
We studied the preparation and property of second-order nonlinear optical(NLO) material with polyimide containing hexafluoroisopropylidene unit and Disperse red 1. Polyamic acid, silylated Disperse red 1, and silane coupling agent were mixed to prepare the solution through hydrolysis and condensation. Thin film was fabricated using the prepared solution and imidized after poling. Before imidization, we could observe the enhancement of poling efficiency under the excitation light in polyamic acid form. The electro-optic coefficient γ33 was determined to be 33.2 pm/V at 632 nm, and was observd to be stable at 100 ℃. The organic/inorganic composite NLO material showed good temporal stability at high temperature arising from the imidization and increase of the density of Si-O-Si bond.

Hexafluoroisopropylidene을 포함하는 폴리이디와 Disperse red 1을 사용하여 이차비선형 광학재료의 제조와 특성에 관하여 연구하였다. Disperse red 1을 포함하는 알콕시 실란과 불소계 polyamic acid 혼합용액에 실란계 가교제를 도입하고, 가수분해 및 축합반응 후 필름을 형성하고 이을 분극처리 후, 이미드와 반응을 진행시켰다. 이미드화 전의 polyamic acid 상태에서 광에 의해 분극효과가 상승하는 현상을 관찰할 수 있었다. 전기광학계수인 γ33의 값은 632 nm에서 33.2 pm/V를 나타내며 100 ℃에서 열적으로 안정함을 관찰할 수 있었다. 유기/무기 복합형태의 비선형 공학재료는 이미드 결합이 형성됨에 따른 효과와 Si-O-Si 결합밀도의 증가에 의해 전기광학 특성의 고온에서의 우수한 경시안정성을 관찰할 수 있었다.

Keywords: polymide; sol-gel process; nonlinear optical material; disperse red 1; electro-optic coefficient

References
  • 1. Norwood R, Khanarian G, Electron. Lett., 26, 1265 (1990)
  •  
  • 2. Girton D, Kwiatkowski S, Lipseomb G, Lytel R, Appl. Phys. Lett., 58, 1730 (1991)
  •  
  • 3. Burland D, Miller R, Reiser O, Twieg R, Walsh C, J. Appl. Phys., 71, 410 (1992)
  •  
  • 4. Yu D, Gharavi A, Yu LP, J. Am. Chem. Soc., 117(47), 11680 (1995)
  •  
  • 5. Liang Z, Dalton LR, Chem. Mater., 7, 941 (1995)
  •  
  • 6. Miller RD, Burland DM, Jurich M, Lee VY, Moylan CR, Thackara JI, Twieg RJ, Verbiest T, Volksen W, Macromolecules, 28(14), 4970 (1995)
  •  
  • 7. Yamada S, Shi RF, Cai YM, Zamani-Khamiri O, Panackal A, Garito AF, Chem. Mater., 8, 2412 (1996)
  •  
  • 8. Chemla DS, Zyss JNonlinear Optical Properties of Organic Molecules and Crystals, vol. 1, 2, Academic Press, New York (1987)
  •  
  • 9. Williams DIn Materials for Nonlinear Optics-Chemical Perspectives, ed. by S.R. Marder, American Chemical Society, Washington (1991)
  •  
  • 10. Yoon CB, Shim HK, Macromol. Chem. Phys., 199, 2433 (1998)
  •  
  • 11. Sung PH, Hsu TF, Polymer, 39(6-7), 1453 (1998)
  •  
  • 12. Choi DH, Park JH, Rhee TH, Kim N, Lee SD, Chem. Mater., 10(3), 705 (1998)
  •  
  • 13. Lebeau B, Brasselet S, Zyss J, Sanchez C, Chem. Mater., 9(4), 1012 (1997)
  •  
  • 14. Hashimoto T, Yoko T, Mater. Trans. JIM, 37(3), 435 (1996)
  •  
  • 15. Lee SK, Yun KS, Lee YT, Choi DH, Polym.(Korea), 22(5), 809 (1998)
  •  
  • 16. Williams DJNonlinear Optical Properties of Organic Materials V, SPIE Proceeding, vol. 1775, p. 228 (1992)
  •  
  • 17. Teng CC, Mann HT, Appl. Phys. Lett., 56(18), 1734 (1990)
  •  
  • 18. Shuto Y, Amano M, J. Appl. Phys., 77(9), 1 (1995)
  •  
  • 19. Sekkat Z, Dumont M, Appl. Phys. B-Lasers Opt., 54, 486 (1992)
  •  
  • 20. Chung SH, Stevens JR, Am. J. Phys., 59, 1024 (1991)
  •  
  • 21. Kaminow IAn Introduction to Electro-Optic Devices, Academic Press, New York (1974)
  •  
  • 22. Mortazavi MA, Knoesen A, Kowel ST, Higgins BG, Dienes A, J. Opt. Soc. Am., B6, 733 (1989)
  •  
  • 23. Michelotti F, Toussaere E, Levenson R, Liang J, Zyss J, J. Appl. Phys., 80(3), 1773 (1996)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1999; 23(6): 815-824

    Published online Nov 25, 1999