Article
  • Thermal Characteristics of Thermo-Latent Initiator/Epoxy Cure Systems in Oxidation Conditions
  • Lee JR, Kwon H, Park SJ, Lee SB
  • 열잠재성 개시제에 의한 에폭시 수지 경화계의 산화 분위기하에서의 열적 특성
  • 이재락, 권현, 박수진, 이상봉
Abstract
The thermal characteristics of epoxy resin (diglycidy1 ether of bisphenol A, DGEEA, YD-128) containing 1, 2, 3 wt% of thermo-latent initiator, N-benzylpyrazinium hexafluoroantimonate (BPH), were investigated. The specimens were stored at 300℃ in oxidation conditions for 0, 2, 4, and 8 hours. The flexural properties and fracture surface of the DGEBA/BPH system showed an optimum value at about 2∼3 wt% of BPH. The result of activation energy for thermal degradation in oxidation conditions showed that internal structure of DGEBA/BPH systems was stabilized as the retention time was increased. The similar result was also shown in flexural behavior. These results could be explained by the post-reaction of unretracted functional groups in the cured specimens by Post-curing.

DGEBA계 이관능성 에폭시 수지 (diglycidyl ether of bisphenol A, YD-128)에 열잠재성 촉매형 경화제인 N-benzylpyrazinium hexafluoroantimonate (BPH)를 1, 2, 3 wt % 첨가하여 경화시킨 시편의 고온 특성을 연구하였다. DGEBA에 BPH를 첨가하여 경화된 시편을 300℃ 산화 분위기 하에서 0, 2, 4, 8시간 유지시켰다. DGEBA/BPH에서 굴곡 특성과 그 파단면의 변화를 살펴본 결과 BPH 함량이 2, 3 wt%일 때 최적값을 보였다. 고온 산화 분위기하에서 분해시 필요한 활성화 에너지를 측정한 결과 본 DGEBA/BPH계에서 이루어진 구조는 체류시간에 따라 안정화되는 특성을 보였으며, 굴곡 특성에서도 유사한 경향을 보여주었다. 이는 경화가 끝난 후 시편내에 존재하는 미반응 반응기가 후경화에 의해 완전히 반응함으로써 나타나는 현상으로 해석할 수 있다.

Keywords: DGEBA; N-benzylpyrazinium hexapluoroantimonate (BPH); activation energy; flexural properties; post-curing

References
  • 1. May CAEpoxy Resins, Marcel Dekker Inc., New York (1988)
  •  
  • 2. Penn LS, Chiao TTHandbook of Composites, ed. by G. Lubin, p. 57, Van Norstrand Reinhold Co., Inc., New York (1982)
  •  
  • 3. Odian GPrinciples of Polymerization, 3nd, Chap. 7, John Wiley & Sons, Inc., New York (1991)
  •  
  • 4. Ishida H, Low HY, Macromolecules, 30(4), 1099 (1997)
  •  
  • 5. Inoue S, Aida TRing-Opening Polymerization, eds. by K.J. Ivin and T. Saegusa, vol. I, p. 185, Elsevier Sci., New York (1984)
  •  
  • 6. Wyzgoski MG, J. Appl. Polym. Sci., 26, 1689 (1981)
  •  
  • 7. Pappas SP, Hill LW, J. Coat. Technol., 53, 43 (1981)
  •  
  • 8. Gu J, Narang SC, Pearce EM, J. Appl. Polym. Sci., 30, 2997 (1985)
  •  
  • 9. Kim YC, Park SJ, Lee JR, Polym. J., 29, 759 (1997)
  •  
  • 10. Zacharia RE, Simon SL, J. Appl. Polym. Sci., 64(1), 127 (1997)
  •  
  • 11. Lee SB, Park YS, Lee KW, Endo T, Chem. Lett., 16, 287 (1995)
  •  
  • 12. Matejka L, Chabanne P, Tighzert L, Pascault JP, J. Polym. Sci. A: Polym. Chem., 32(8), 1447 (1994)
  •  
  • 13. Ryan MEM.S. Thesis, McGill Univ., Montreal, Canada (1973)
  •  
  • 14. Schulltz WJInternational Encyclopedia of Composites, ed. by S.M. Lee, vol. 2, p. 77, VCH Pub. Inc., New York (1990)
  •  
  • 15. Kim DS, Lee JR, Polym.(Korea), 18(2), 199 (1994)
  •  
  • 16. Ishida H, Allen DJ, J. Polym. Sci. B: Polym. Phys., 34(6), 1019 (1996)
  •  
  • 17. Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963)
  •  
  • 18. Wellinghoff ST, Baer E, J. Appl. Polym. Sci., 22, 2025 (1987)
  •  
  • 19. Peterson REStress Concentration Factors, Wiley-Interscience, New York (1974)
  •  
  • 20. Ward IMMechanical Property of Solid Polymers, John Wiley & Sons, New York (1982)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1998; 22(3): 435-445

    Published online May 25, 1998