Article
  • The Study on the Synthesis and Their Thermal Degradation Properties of Modified Polycarbosilane Preceramics with Platinum Catalyst
  • Hwang TS, Lim JH, Woo HG
  • 백금촉매를 이용한 Modified Polycarbosilane 세라믹 전구체의 합성과 열분해 특성에 관한 연구
  • 황택성, 임정훈, 우희권
Abstract
New ceramic precursors, copolymers of polycarbosilane (PCS) and dichloromethyvinylsilane (DMVS), were synthesized by hydrosilylation with platinum catalyst. The structure of PCS-DMVS copolymers were investigated by using FT-IR and NMR spectrometers. The syntheses of PCS-DMVS copolymers were confirmed by monitoring the change of the absorption bands appearing at 3050, 2100, 1600, 480 cm-1 on the FT-IR spectra. The syntheses of copolymers were also confirmed by the presence of peaks at 3.0, 4.5, 5.9 ppm on the 1H-NMR spectra and at 62 and 130 ppm on the l3C-NMR spectra, which are the characteristic peaks of vinyl group of DMVS. The initial thermal degradation temperature, weight loss and molecular weight of PCS-DMVS copolymers were analysed by thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). The initial thermal degradation temperature of PCS-DMVS copolymer was 483℃. The total weight loss was PCS-DMVS copolymer 20 wt% and significantly decreased comparing with pure PCS at the same degradation condition.

백금촉매를 이용한 hydrosilylation 반응에 의해 difunctional group을 갖는 새로운 세라믹 고분자 전구체를 합성하기 위하여 polycarbosilane (PCS )-dichloromethylvinylsilane (DMVS)공중합체를 합성하였다. 합성한 공중합체의 FT-IR 스펙트럼 결과 3050, 2100, 1600, 480cm-1부근에서 피크 변화와 1H-NMR 및 13C-NMR 스펙트럼의 δ=3.0, 4.5, 5.9 ppm과 δ=130, 62ppm 부근에서 DMVS의 비닐기 (CH2=CH-)에 의한 특성 피크로부터 공중합체의 합성을 확인하였다. 또한 초기 열분해 온도와 열중량 변화 및 분자량 변화를 알아보기 위한 열중량 분석과 GPC 측정결과 촉매량이 0.3 wt%일 때 열분해 초기온도가 483℃로 중량감소는 20wt%로 가장 낮았으며 순수한 PCS의 그것에 비해 중량감소율이 현저히 낮아졌다.

Keywords: polysilane; polycarbosilane; modified polycarbosilane; preceramic polymer; platinum catalyst; thermal degradation

References
  • 1. Mark JE, Allock HR, West RInorganic Polymers, Chapter 1, Academic Press, New York (1990)
  •  
  • 2. Allcock HR, Lampe FWContemporary Polymer Chemistry, 2nd ed., Prentice Hall, New Jersey (1992)
  •  
  • 3. Laine RM, Babonneau F, Chem. Mater., 5, 260 (1993)
  •  
  • 4. Wynne KJ, Rice RW, Mater. Sci., 14, 297 (1984)
  •  
  • 5. Zelden M, Wynne KJ, Allcock HRInorganic and Organometallic Polymers: Macromolecules Containing Silicon, Phosphous and other Inorganic Elements, ACS Symp. Ser. 360, Am. Chem. Soc. Washington, D.C. (1988)
  •  
  • 6. Laine RMInorganic and Organometallic Polymers with Special Properties, NATO ASI Ser. E. Applied Sciences, Vol. 206, Kluwer Academic Publishers (1992)
  •  
  • 7. Mark JE, Allcock HR, West RInorganic Polymer, Prentice-Hall, Inc. (1992)
  •  
  • 8. Sawyer LC, Jamieson M, Brikowski D, Haider MI, Chen RT, J. Am. Ceram. Soc., 70, 798 (1987)
  •  
  • 9. West R, Hench LL, Ulrich DRUltrastructure Processing and Ceramic, Classes and Composites, p. 235, John Wiley & Sons, New York (1984)
  •  
  • 10. Okamura K, Sato M, Hasegawa Y, J. Mater. Sci. Lett., 2, 1769 (1983)
  •  
  • 11. Ichikawa H, Machino R, Mitsuno S, Ishikawa T, J. Mater. Sci., 21, 4352 (1986)
  •  
  • 12. Okabe Y, Hejo J, Kato A, Less J, Commun. Mater., 68, 29 (1979)
  •  
  • 13. Liao CX, Weber WP, Macromolecules, 26, 563 (1993)
  •  
  • 14. Uhlig W, J. Polym. Sci. A: Polym. Chem., 33(2), 239 (1995)
  •  
  • 15. Bruno B, Corriu Robert JP, Hubert Mutin LP, Jean-Marc DP, Andre V, Organometallics, 10, 1457 (1991)
  •  
  • 16. Chalk AJ, Harrod JF, J. Am. Chem. Soc., 87, 16 (1965)
  •  
  • 17. Yajima S, Hasegawa Y, Hayashi J, Ilmura M, J. Mater. Sci., 13, 2569 (1978)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1998; 22(2): 194-200

    Published online Mar 25, 1998