Article
  • The Effect of Styrene-Methacrylate Block Copolymers on the Interfacial Tensions Between(Poly(phenylene oxide)/Polystyrene)and Poly(styrene-co-acrylonitrile)
  • Lee YU, Kim C, Jo WH
  • Styrene-Methacrylate 블록 공중합체가 (Poly(phenylene oxide) / Polystyrene)과 Poly(styrene-co-acrtlonitrile)의 계면 장력에 미치는 영향
  • 이용욱, 김호철, 조원호
Abstract
The effect of styrene-methyl methacrylate block copolymers on the interfacial tensions between (poly(phenylene oxide)/polystyrene) (PPO/PS) and poly(styrene-co- acrylonitrile) (SAN) was examined by the imbedded fiber retraction (IFR) method. It was found that the interfacial tension between (PPO/PS) and SAN decreases with increasing the amount of the block copolymer and the block copolymer containing longer PMMA block is more effective in reduction of interfacial tension than the block copolymer of shorter PMMA block. When the block copolymers were added into SAN fiber, the reduction in interfacial tension was larger as compared with the case when the block copolymers were added to the (PPO/PS) matrix. These results were very consistent with the results of SEM observations more regular and finer dispersion was observed when the block copolymers were added to the blend system.

Styrene-methyl methacrylate 블록 공중합체가 (poly(phenylene oxide)/polystyrene) (PPO/PS)와 poly(styrene-co-acrylonltrile) (SAN)의 계면 장력에 미치는 영향을 imbedded fiber retraction (IFR) 방법을 이용하여 측정하였다. 블록 공중합체가 첨가됨에 따라 (PPO/PS)SAN의 계면 장력은 저하하였으며 블록 공중합체의 methyl methacrylate 블록의 길이가 긴 경우에 더욱 현저한 저하를 나타내었다. 블록 공중합체를 섬유상인 SAN에 가했을 경우가(PPO/PS) 매트릭스에 가한 경우보다 더 낮은 블록 공중합체의 농도에서 더 큰 계면 장력의 감소를 나타내었다. 이러한 결과들은 주사전자현미경 (SEM)에 의한 모폴로지 관찰결과와 잘 일치하였다.

Keywords: interfacial tension; block copolymer; IFR method

References
  • 1. Paul DR, Newman SPolymer Blends, Academic Press, New York (1978)
  •  
  • 2. Paul DR, Spering LHMulticomponent Polymer Materials, American Chemical Society, Washington (1986)
  •  
  • 3. Wu SPolymer Interface and Adhesion, Marcel Dekker, New York (1982)
  •  
  • 4. Wu S, J. Phys. Chem., 74, 612 (1970)
  •  
  • 5. Roe RJ, J. Colloid Interface Sci., 31, 228 (1969)
  •  
  • 6. Anastasiadis SH, Chen JK, Koberstein JT, Polym. Eng. Sci., 26, 1410 (1986)
  •  
  • 7. Nam KH, Jo WH, Polymer, 36(19), 3727 (1995)
  •  
  • 8. Sakai T, Polymer, 6, 659 (1965)
  •  
  • 9. Edward H, J. Appl. Polym. Sci., 12, 2213 (1968)
  •  
  • 10. Graebling D, Muller R, Parlierne JF, Macromolecules, 26, 320 (1993)
  •  
  • 11. Lacroix C, Bousmina M, Carreau PJ, Favis BD, Michel A, Polymer, 37(14), 2939 (1996)
  •  
  • 12. Parlierne JF, Rheol. Acta, 29, 204 (1990)
  •  
  • 13. Tomotika S, Proc. Roy. Soc., A150, 322 (1935)
  •  
  • 14. Chappelear DC, Am. Chem. Soc. Div. Polym. Chem. Polym. Prepr., 5, 363 (1964)
  •  
  • 15. Elemans PHM, Janssen JMH, Meijer HEH, J. Rheol., 34, 1311 (1990)
  •  
  • 16. Carriere CJ, Cohen A, Arends CB, J. Rheol., 33, 681 (1989)
  •  
  • 17. Cohen A, Carriere CJ, Rheol. Acta, 28, 223 (1989)
  •  
  • 18. Carriere CJ, Cohen A, J. Rheol., 35, 205 (1991)
  •  
  • 19. Sammler RL, Dion RP, Carriere CJ, Cohen A, Rheol. Acta, 31, 554 (1992)
  •  
  • 20. Ellingson PC, Strand DA, Cohen A, Sammler RL, Carriere CJ, Macromolecules, 27(6), 1643 (1994)
  •  
  • 21. Kirjava J, Rundqvist T, Holstimiettinen R, Heino M, Vainio T, J. Appl. Polym. Sci., 55(7), 1069 (1995)
  •  
  • 22. Ihm DJ, White JL, J. Appl. Polym. Sci., 60(1), 1 (1996)
  •  
  • 23. Morton MAnionic Polymerization: Principles and Practice, Academic Press, New York (1983)
  •  
  • 24. Perrin DD, Armarego WLFPurification of Laboratory Chemicals, Pergamon Press (1988)
  •  
  • 25. Jo WH, Kim HC, Baik DH, Macromolecules, 24, 2231 (1991)
  •  
  • 26. Wu S, Polym. Eng. Sci., 27, 335 (1987)
  •  
  • 27. Tang T, Huang BT, Polymer, 35(2), 281 (1994)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1997; 21(6): 1066-1073

    Published online Nov 25, 1997