Article
  • Adhesion Prorerties with Moisture Absorption between High Silica Loaded epoxy Molding Compound and Leadframe
  • Oh KK, Moon KS, Yoon HG, Moon TJ, Ryu JH, Kim JM, Kim JG
  • 실리카 고충전 에폭시 수지 조성물과 리드프레임과의 흡습에 따른 접착 특성
  • 오경근, 문경식, 윤호규, 문탁진, 유제홍, 김진모, 김조균
Abstract
Adhesion properties between alloy 42 leadframe and epoxy molding compound (EMC) filled with more than 87 wt% of silica and cured with xylok or phenol novolac (PN) were measured with moisture absorption. The EMC cured with xylok exhibited lower moisture absorption and higher adhesion strength independent of the content of silica but the adhesion strength was more rapidly decreased with moisture absorption than that of cured with PN. From the analysis of the Interface between EMC and leadframe with X-ray photoelectron spectroscopy, the principal adhesive mechanism of EMC cured with xylok was thought to be the hydrogen bond, and thus the decrease of adhesion strength between EMC and leadframe was attributed to the failure of the hydrogen bond by the absorbed water Also, the higher adhesion strength of EMC cured with xylok could be explained as the low viscosity due to the hydrogen bond and the short intermolecular spacing with the leadframe.

실리카 함량을 87wt% 이상 고충전시킨 에폭시 수지 조성물의 경화제를 xylok과 phenol novolac (PN)으로 변화시키면서 수분 흡습에 따른 alloy42 리드프레임과의 접착 강도 및 흡습률을 측정하였다. 경화제로써 xylok을 적용하였을 때는 실리카의 충전량과 관계없이 PN보다 낮은 흡습률 및 높은 접착 강도를 보였으나, 흡습 시간에 따른 접착 강도의 감소율은 다른 것으로 나타났다. 에폭시와 리드프레임과의 접착 계면의 X-ray photoelectron spectroscopy 분석을 통해서, xylok을 적용한 EMC와 리드프레임과의 주된 접착 기구는 여러 기구 중 수소 결합을 들 수 있으며, 수분 흡습에 의한 수소 결합의 파괴로 접착 강도 감소율이 더 크다는 것을 알 수 있었다. 또한, xylok의 높은 접착 강도는 저점도에 기인한 많은 수소 결합 및 리드프레임과의 가까운 분자간 거리에 의한 것으로 설명할 수 있었다.

Keywords: EMC(epoxy molding compound); curing agent; X-ray photoelectron spectroscopy; moisture absorption; adhesion strength

References
  • 1. Pecht MG, Nguyen LT, Hakim EBPlastic-Encapsulated Microelectronics, chap. 4, John Wiley & Sons, Inc., NY (1995)
  •  
  • 2. Nguyen LTSPE RETEC, 182 (1991)
  •  
  • 3. Kaji M, Takanori A, Kazuhiko N, J. Thermosetting Plast., 14, 1 (1993)
  •  
  • 4. Yoon HG, Moon KS, Kim JM, Polym. Abstr.(Korea), 22(1), 44 (1997)
  •  
  • 5. Pizzi A, Mittal KLHandbook of Adhesive Technology, Marcel Dekker, Inc., NY (1994)
  •  
  • 6. Nakazawa M, Somorjai GA, Appl. Surf. Sci., 84, 309 (1995)
  •  
  • 7. Comyn JDurability of Structural Adhesives, p. 85, Applied Science, Barking (1983)
  •  
  • 8. Gledhill RA, Kinloch AJ, Shaw SJ, J. Adhes., 11, 3 (1980)
  •  
  • 9. Gosselin CA, SAE Tech. Paper Ser.850211 (1985)
  •  
  • 10. Briggs DPractical Surface Analysis, Eds., by D. Briggs and M.P. Seah, John Wiely & Sons, Ltd., NY (1983)
  •  
  • 11. Spells SJCharacterization of Solid Polymers, Chapman & Hall, London (1994)
  •  
  • 12. Brundle CR, Chuang TJ, Wandelt K, Surf. Sci., 68, 459 (1977)
  •  
  • 13. Yoon HG, Moon TJAdhesion Mechanism between EMC and Leadframe and Development of Additives and Base Resin System for Good Adhesion Property of EMC, Final Research Report on Commision of Cheil Industries Inc. (1996)
  •  
  • 14. Evans URThe Corrosion and Oxidation of Metals, Edward Anold Ltd., London (1968)
  •  
  • 15. Stockbridge CD, Sewell PB, Cohen M, J. Electrochem. Soc., 108, 928 (1961)
  •  
  • 16. Glazer J, J. Polym. Sci., 98, 355 (1954)
  •  
  • 17. Andrews EH, King NK, J. Mater. Sci., 11, 2004 (1976)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1997; 21(5): 812-820

    Published online Sep 25, 1997