Article
  • Swelling and Separation Behavior of Ethylene Ionomers in Water-Ethanol Mixtures
  • Lee JH, Choi KY, Seoh GB, Min BK, Yoon S
  • 에틸렌 아이오노머의 물-알콜 혼합약에 대한 팽윤 및 분리거동
  • 이재홍, 최길영, 서근복, 민병권, 윤성희
Abstract
Polyethylene ionomers were prepared by reacting poly(ethylene -comethylacrylate) (PEMA) with KOH and ammonia mixtures in water. The ionomers were found to have the side groups of potassium carboxylate, amide and carboxylic acid. Swelling and pervaporation properties of the membranes cast from the ionomer emulsion were measured in the mixture of water and ethanol. Maxima in swelling ratio and permeation flux were observed at the feed composition of 50 wt% ethanol. The ionomers containing 70 mole% COOK of the side groups revealed the highest swelling ratio and permeation flux Separation factors for water were found to increase with the permeation flux, which means the ionic groups in the ionomers play a role in enhancing both the permeation flux and separation factor This might be due to the increased mobility of the ionic groups with high a(finite to water at a high swollen state. The activation energy for the permeation flux calculated from an Arrhenius type equation showed a minimum at ethanol composition of 50 wt%.

폴리에틸렌메틸아크릴레이트 공중합체 (PEMA)를 KOH 및 NH3와 반응시켜 폴리에틸렌계 아이오노머를 제조하였다. 제조된 아이오노머는 KOH 및 NH3의 조성에 따라 측기에 COOK, CONH2, COOH기를 갖고 있으며 아이오노머막을 제조하여 물-에탄올 혼합액에서의 팽윤 및 투과 증발 거동을 조사한 결과 에탄을 50% 조성에서 최대 팽윤도 및 투과증발 속도를 나타내었다. 에탄올 조성을 50wt%로 고정하고 측기의 조성이 다른 아이오노머에 대하여 실험한 경우 COOK 함량이 측기 중 70 몰%인 아이오노머가 가장 큰 팽윤도 및 투과속도 값을 나타내었다. 특이한 사항은 팽윤도가 큰 아이오노머가 투과증발 속도도 크고 물에 대한 선택투과도도 동시에 크다는 점으로서 이는 에틸렌계 아이오노머에서 팽윤도가 증가할수록 친수성인 COOK 그룹의 움직임이 커져 투과증발에 대한 영향이 커진 결과로 추정된다. 투과증발 속도는 온도변화에 따라 Arrhenius 식으로 표현할 수 있으며 이때 투과활성화 에너지는 팽윤도가 큰 5owt% 에탄을 조성에서 최소값을 나타내었다.

Keywords: ethylene ionomer; side groups; swelling ratio; pervaporation

References
  • 1. Rogers CEPolymer Permeability, ed. by J. Comyn, Chap. 2, Elsevier Applied Science Publishers, London (1985)
  •  
  • 2. Ashley RJPolymer Permeability, ed. by J. Comyn, Chap. 7 (1985)
  •  
  • 3. Lundberg RDEnc. Polym. Sci. Eng., 2nd vol. 8, p. 393, John Wiley and Sons, New York (1987)
  •  
  • 4. Rees RWU.S. Patent, 3,264,272 (1966)
  •  
  • 5. Longworth RIonic Polymers, ed. by L, Holliday, chap. 2, Halsted Press, New York (1975)
  •  
  • 6. MacKnight WJ, Earnest TR, Macromol. Rev., 16, 41 (1981)
  •  
  • 7. Kesting RESynthetic Polymeric Membranes, 2nd, chap. 4, John Wiley & Sons, New York (1985)
  •  
  • 8. Chen WJ, Martin CR, J. Membr. Sci., 95(1), 51 (1994)
  •  
  • 9. Lee JH, Choi KY, Min BK, Yoon S, Polym. J.to submitted
  •  
  • 10. Parrish CFEnc. Chem. Technol., 3rd, vol. 21, p. 377, John Wiley & Sons, New York (1983)
  •  
  • 11. Grulke EAPolymer Handbook, 3rd., eds. by J. Brandrup and E.H. Immergut, p. VII/519, John Wiley and Sons, New York (1989)
  •  
  • 12. Lee JH, Kim SCPolymers for Advanced Technologies, ed. by M. Lewin, p. 683, VCH Publishers, New York (1988)
  •  
  • 13. Ishihara K, Nagase Y, Matsui K, Makromol. Chem. Rapid Commun., 7, 43 (1986)
  •  
  • 14. Koops GH, Smolders CAPervaporation Membrane Separation Processes, ed. by R.Y.M. Huang, chap. 5, Elsevier Science Publishers, Amsterdam (1991)
  •  
  • 15. Yoshikawa M, Yukoshi T, Sanui K, Ogata N, J. Polym. Sci. A: Polym. Chem., 26, 335 (1988)
  •  
  • 16. Itoh T, Ohkawa Y, Ishihara K, Shinohara I, Polym. J., 15, 827 (1983)
  •  
  • 17. Ruckenstein E, Liang L, J. Membr. Sci., 110(1), 99 (1996)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1997; 21(4): 575-581

    Published online Jul 25, 1997