Article
  • Effect of Zone-Drawing Conditions on the Tensile Properties of Gel-Spun Ultrahigh Molecular Weight Polyethylene Fiber
  • Han SS, Yoon WS, Lyoo WS, Lee CJ, Ghim HD, Han YA, Ji BC
  • 겔방사 초고분자량 폴리에틸렌 섬유의 인장성질에 미치는 띠연신 조건의 영향
  • 한성수, 윤원식, 류원석, 이철주, 김한도, 한영아, 지병철
Abstract
Ultrahigh molecular weight polyethylene (PE) solution of concentration of 5 wt% was quenched to room temperature to form gel and spun to form fiber, and the effects of zone-drawing conditions on the tensile properties were investigated. Breaking stress and tensile modulus of drawn gel-spun fiber increased and breaking strain decreased with decreasing heat band speed and with increasing drawing temperature. On the other hand, there was a optimum drawing stress for the maximum draw ratio. Maximum draw ratio up to 26.4 was achieved at the heat band speed, drawing temperature, and drawing stress of 1 mm/min, 128℃, and 20 MPa, respectively. Breaking stress, tensile modulus, and breaking strain of gel-spun fiber drawn at these conditions were 2.63 GPa, 43.3 GPa, and 12.75%, respectively. It was identified that breaking stress and tensile modulus increased with an increase in the draw ratio and fraction of tie molecules. Fraction of tie molecules in this study was 0.1732. This value was about 26% of maximum fraction of tie molecules obtained by the drawing of PE.

농도 5wt%의 초고분자량 폴리에틸렌 (polyethylene(PE)) 용액을 상온으로 냉각시켜 겔을 만들고 이를 방사하여 섬유를 제조한 후 띠연신 조건이 인장성질에 미치는 영향을 고찰하였다. 띠열판 속도를 감소시키고 연신 온도를 증가시킴에 따라 연신된 겔 방사 섬유의 절단 응력 및 인장 탄성률은 증가하였고 절단 변형률은 감소하였다. 한편 연신 응력의 경우에는 최대 연신비가 얻어지는 적정값이 존재하였다. 띠열판 속도, 연신 온도 및 연신 응력이 각각 1 mm/min, 128℃ 및 20MPa인 조건에서 최대 연신비인 26.4배의 연신이 가능했으며 이때의 연신된 겔 섬유의 절단 강도, 인장 탄성률 및 절단 변형율은 각각 2.63GPa, 43.3GPa 및 12.75%였다. 연신비 및 tie 분자들의 분율이 증가할수록 연신된 겔 방사 섬유의 절단 강도 및 인장 탄성률이 증가됨을 확인하였다. 얻어진 tie 분자들의 분율은 0.1732로서 PE의 연신에 의해서 얻어질 수 있는 tie 분자 분율의 최대값의 약 26%에 해당하였다.

Keywords: zone drawing condition; tensile properties; polyethylene gel fiber; gel spinning; tie molecules

References
  • 1. Ohya T, Polym. Eng. Sci., 23, 697 (1983)
  •  
  • 2. Sittig MCarbon and Graphite Fibers, Noyes Data Corporation (1980)
  •  
  • 3. Souther SH, Porter RS, J. Macromol. Sci.-Phys., B4, 541 (1970)
  •  
  • 4. Shimizu J, Toriumi K, Tamai K, Sen-I Gakkaishi, 33, T208 (1977)
  •  
  • 5. Smith P, Lemstra PJ, J. Mater. Sci., 15, 505 (1980)
  •  
  • 6. Fukuhata K, Yokokawa T, Miyasaka K, J. Polym. Sci. B: Polym. Phys., 22, 133 (1984)
  •  
  • 7. Wu W, Black WB, Polym. Eng. Sci., 19, 1169 (1979)
  •  
  • 8. Nakagawa K, Konaka T, Yamakawa S, Polymer, 26, 84 (1985)
  •  
  • 9. Smith P, Lemstra PJ, Macromol. Chem., 180, 2983 (1979)
  •  
  • 10. Smith P, Lemstra PJ, Polymer, 21, 1341 (1980)
  •  
  • 11. Smith P, Lemstra PJ, Colloid Polym. Sci., 258, 891 (1980)
  •  
  • 12. Smith P, Lemstra PJ, J. Polym. Sci. A: Polym. Chem., 19, 877 (1981)
  •  
  • 13. Smith P, Lemstra PJ, Br. Polym. J., 212 (1980)
  •  
  • 14. Smith P, Lemstra PJ, Colloid Polym. Sci., 259, 1070 (1981)
  •  
  • 15. Smith P, Lemstra PJ, J. Polym. Sci. A: Polym. Chem., 19, 1007 (1981)
  •  
  • 16. Smith P, Lemstra PJ, Macromolecules, 16, 1802 (1983)
  •  
  • 17. Matsuo M, Manley RJ, Macromolecules, 15, 985 (1982)
  •  
  • 18. Matsuo M, Manley RJ, Macromolecules, 16, 1505 (1983)
  •  
  • 19. Matsuo M, Manley RJ, Macromolecules, 16, 1500 (1983)
  •  
  • 20. Matsuo M, Inoue K, Abumiya N, Sen-I Gakkaishi, 40, T275 (1984)
  •  
  • 21. Matsuo M, J. Soc. Rheol. Jpn., 13, 4 (1985)
  •  
  • 22. Matsuo M, Sawatari CISF-85, PI-34, 20, Hakone, Japan (1985)
  •  
  • 23. Smook J, Penning AJ, J. Mater. Sci., 19, 3443 (1984)
  •  
  • 24. Smook J, Penning AJ, J. Mater. Sci., 19, 31 (1984)
  •  
  • 25. Smook J, Penning AJ, Polym. Bull., 13, 209 (1985)
  •  
  • 26. Smook J, Finterman M, Penning AJ, Polym. Bull., 2, 775 (1980)
  •  
  • 27. Kalb B, Penning AJ, Polymer, 21, 3 (1980)
  •  
  • 28. VanHutten PF, Koning CE, Penning AJ, J. Mater. Sci., 20, 1556 (1985)
  •  
  • 29. Kalb B, Penning AJ, Polym. Bull., 1, 871 (1979)
  •  
  • 30. Smook J, Penning AJ, J. Mater. Sci., 19, 1359 (1984)
  •  
  • 31. Yamada K, Takayanagi M, J. Appl. Polym. Sci., 27, 2091 (1981)
  •  
  • 32. Kunugi T, Akiyama I, Polymer, 23, 1199 (1982)
  •  
  • 33. Kunugi T, Suzuki A, J. Appl. Polym. Sci., 26, 1951 (1981)
  •  
  • 34. Kunugi T, Polymer, 23, 1983 (1982)
  •  
  • 35. Kunugi T, Oomori S, Polymer, 29, 814 (1988)
  •  
  • 36. Kim SY, Han SS, Choi KS, J. Korean Soc. Text. Eng. Chem., 26, 12 (1986)
  •  
  • 37. Kim SY, Ji BC, Yoon WS, J. Korean Fib. Soc., 30, 379 (1993)
  •  
  • 38. Han SS, Lyoo WS, Choi JH, Park SK, Ji BC, Ha WS, Lee CJ, Polym.(Korea), 20(2), 288 (1996)
  •  
  • 39. Han SS, Yoon WS, Lyoo WS, Lee CJ, Ji BC, Kim EK, J. Macromol. Sci.-Phys.in press (1996)
  •  
  • 40. Cleng W, Peterlin A, J. Polym. Sci. A: Polym. Chem., 9, 1191 (1971)
  •  
  • 41. Clferri A, Ward IMUltra High Modulus Polymer, chap. 10, Appl. Sci. Pub. (1979)
  •  
  • 42. Mishara SP, Deopura BL, J. Appl. Polym. Sci., 24, 1227 (1979)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(6): 1049-1060

    Published online Nov 25, 1996